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▪ Robotics teacher & researcher at URJC

▪ 5+ years in intelligent, robust robotic systems

▪ PhD in Automatic Control and Robotics from UPM

▪ Visiting researcher at TU Delft Cognitive Robotics Lab

▪ Focus: self-awareness, planning, deliberation
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2



My journey into the topic 

3



My journey into the topic 

4



My journey into the topic

5



Wishlist
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▪ Model the robot, its mission, and its environment

▪ Enable adaptive behaviour in challenging conditions

▪ Support different  systems

▪ Promote understanding, not just action

▪ Robust autonomy



Wishlist

7

Cognitive
Architecture

▪ Model the robot, its mission, and its environment

▪ Enable adaptive behaviour in challenging conditions

▪ Support different  systems

▪ Promote understanding, not just action

▪ Robust autonomy



Outline
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Part 1: Foundations of 
Cognitive Architectures

▪ What are Cognitive 
Architectures?

▪ Core capabilities

▪ Classical examples: 
SOAR, ACT-R, LIDA

Part 2: Deliberation in 
Robotics

▪ CRAM / KnowRob

▪ SkiROS

▪ SysSelf

Part 3: What is Next

▪ CoreSense

▪ Limitations and Future 
work

▪ Conclusions



Part 1.1:
Foundations of Cognitive Architectures

What are Cognitive Architectures?



What is a cognitive architecture
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Reusable blueprint that defines the core components of an intelligent system

Perceive

Reason

Act
Stable over time

Applicable to 
different tasks 

and/or domains



What is a cognitive architecture
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Supported knowledge:

▪Memory (short- and long-term): Storage of beliefs, goals, and 
knowledge

▪ Representation: Internal models of the environment, self, or task

▪ Functional Processes: Mechanisms that operate over 
representations (e.g., reasoning, planning, learning)



The building analogy
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Cognitive 
architecture

Domain specific 
behaviors, skills, 

algorithms



The building analogy

13



Approaches in cognitive architectures
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Cognition

Model human 
mechanisms

Robust and adaptive 
behaviour

Cognitive 
science

Engineering



Perspectives in cognitive architectures
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Cognitive 
perspectives

Symbolic
(cognitivism)

Emergent
(connectionist)Hybrid

Mind: manipulator 
of symbols

Develop in 
interaction with the 

environment



Intelligent vs cognitive system
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What’s the difference?

▪ Both may use memory, control, I/O, internal models

▪ But cognitive systems evolve over time

▪ They update internal knowledge and adapt behaviours

▪ Intelligent systems are often fixed and task-specific



Intelligent vs cognitive system
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▪Cognitive systems are not just pipelines → integrated 
systems

▪They must manage and use different types of knowledge:

▪Perception: external world
▪Planning: possible futures
▪Memory/Learning: past experiences
▪Communication: coordination



Cognitive system core: Knowledge
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▪How does the system access knowledge?

▪How does it reason about it?

▪How does it use it to make informed decisions?

A cognitive system must know when and 
how to use what type of knowledge, 
depending on the task and context.



Part 1.2:
Foundations of Cognitive Architectures

Core Capabilities



Core capabilities
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Perception

Recognition 
and 

Categorization

Decision-
making

Planning

Reasoning and 
belief 

maintenance

Prediction and 
monitoring 

Execution and 
action

Learning

Langley et al., Cognitive architectures: 
Research issues and challenges (2006)
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Perception

Recognition 
and 

Categorization

Decision-
making

Planning

Reasoning and 
belief 

maintenance

Prediction and 
monitoring 

Execution and 
action

Learning

▪ Beyond raw data: Convert sensor inputs into usable 
representations

▪ Attention management: Allocate limited perceptual 
resources to detect and prioritize relevant signals

▪ Signal vs. noise: Identify critical information in 
complex, cluttered environments

▪ Understanding: interpreting what’s perceived to 
support reasoning and action

Sense Filter Represent

Perception : Transforming sensory data
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Perception

Recognition 
and 

Categorization

Decision-
making

Planning

Reasoning and 
belief 

maintenance

Prediction and 
monitoring 

Execution and 
action

Learning

Abstract processed perceptions:

▪ Integrate multi-sensor data in a unified 
model

▪ Pattern matching

▪ Examples:

▪ Reading: letters → words → meaning

▪ Service robot: kitchen area vs. seating area → 
correct delivery

Recognition and Categorization: 
From data to concepts
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Perception

Recognition 
and 

Categorization

Decision-
making

Planning

Reasoning and 
belief 

maintenance

Prediction and 
monitoring 

Execution and 
action

Learning

Reactive decisions:

▪ Fast, context-driven

▪ Based on recognize-act cycles

Deliberative decisions:

▪ Slow, goal-oriented reasoning

▪ Evaluate possible actions against goals and 
constraints

Decision-making: Reactive vs. 
Deliberative

Determine 
valid actions

Select best 
alternatives
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Perception

Recognition 
and 

Categorization

Decision-
making

Planning

Reasoning and 
belief 

maintenance

Prediction and 
monitoring 

Execution and 
action

Learning

▪ Achieve goals in new situations

▪Model the world: predict action effects

▪ Plan representation: ordered actions + 
expected effects → support subsequent steps

▪ Plan execution:  translate high-level steps 
into low-level motor commands

▪ Replanning: not just fault-tolerance, also 
better ways to reach goals

Planning: Goal-directed strategies
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Perception

Recognition 
and 

Categorization

Decision-
making

Planning

Reasoning and 
belief 

maintenance

Prediction and 
monitoring 

Execution and 
action

Learning

Predicting outcomes & monitoring 
execution

▪ Prediction: use models to estimate effects of actions

▪ Map (state × action) → expected outcome

▪ Explicit action models (e.g., classical planners)

▪Monitoring

▪ Compare predicted vs. actual outcomes

▪ Trigger adaptation or replanning if needed
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Perception

Recognition 
and 

Categorization

Decision-
making

Planning

Reasoning and 
belief 

maintenance

Prediction and 
monitoring 

Execution and 
action

Learning

Predicting Outcomes & Monitoring 
Execution

▪ Learning through monitoring

▪ Update models when predictions fail

▪Metacognition

▪ Reflect on internal processes (resources, confidence, 

progress)

▪ Enables self-awareness and adaptive decision-making

Prediction Action Monitor Update

Metacognition
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Perception

Recognition 
and 

Categorization

Decision-
making

Planning

Reasoning and 
belief 

maintenance

Prediction and 
monitoring 

Execution and 
action

Learning

Learning

▪Core process:

▪ Remember: Store past experiences

▪ Reflect: Analyse to find patterns

▪ Generalize: Apply insights to new situations

▪ Learning strategies:

▪ Specific experiences that may be generalized later

▪ Learning from experience 

▪ Metareasoning for self-directed, strategic learning
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Perception

Recognition 
and 

Categorization

Decision-
making

Planning

Reasoning and 
belief 

maintenance

Prediction and 
monitoring 

Execution and 
action

Learning

Reasoning: Drawing conclusions 
from beliefs

▪ Reasoning vs. Planning

▪ Planning: Select actions in the world to achieve goals

▪ Reasoning: Derives internal conclusions from beliefs

▪ Knowledge representation: encode relationships

▪ Inference mechanisms:

▪ Primarily deductive reasoning

▪ May also support abductive or probabilistic inference
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Perception

Recognition 
and 

Categorization

Decision-
making

Planning

Reasoning and 
belief 

maintenance

Prediction and 
monitoring 

Execution and 
action

Learning

Execution: Turning decisions into 
actions

▪ Goal: Ensure decisions lead to desired real-world 

results → how to act

▪ Execution Modes:

▪ Closed-loop (reactive): continuous feedback & 

adjustment

▪ Uncertain or dynamic environments

▪ Open-loop (automatized)

▪ Stored procedure



Part 1.3:
Foundations of Cognitive Architectures

Classical examples



SOAR 
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▪ Developed in the 1980s to model all 

aspects of cognition

▪ Key Features:

▪ Symbolic knowledge representation

▪ Problem solving via production rules

▪ Learning through chunking (creating 

new rules from experience)
Introduction to the Soar Cognitive Architecture, Laird (2022) 

https://arxiv.org/pdf/2205.03854



Memory systems in SOAR
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▪ Procedural Memory: rules and skills

▪ Semantic Memory: general knowledge

▪ Episodic Memory: past experiences

▪Working Memory: active beliefs and goals



SOAR: Perception and the Spatial 
Visual System
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▪ Processes 2D and 3D visual 

input into symbolic form

▪Mapped Capabilities:

▪ Perception

▪ Recognition and categorization

Image Object o45 has 
color g35    

Introduction to the Soar Cognitive Architecture, Laird (2022) 
https://arxiv.org/pdf/2205.03854



SOAR: Reasoning and Decision-Making
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▪ Rules to elaborate the current state:

▪ Adds beliefs
▪ Evaluates conditions

▪ Proposes operators (possible 
actions)

▪ If no clear choice → Impasse

▪ Triggers a substate (a new 
reasoning context)

▪ Allows deeper reflection on 
missing or conflicting knowledge Introduction to the Soar Cognitive Architecture, Laird (2022) 

https://arxiv.org/pdf/2205.03854



SOAR: Planning
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▪ Hierarchical and flexible planning

▪ Decomposed goals

▪ Separate reasoning spaces

▪ Each sub-state as a mental 

workspace

▪ Real-time adaptability

▪ Result: Plans are built dynamically, 

step by step Introduction to the Soar Cognitive Architecture, Laird (2022) 
https://arxiv.org/pdf/2205.03854



SOAR: Learning
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▪ Reinforcement learning: numeric 

preferences to better-performing actions

▪ Episodic memory: snapshots of past 

situations, which can be retrieved and 

reused in similar contexts

▪ Chunking (procedural learning)

▪ Solved impasse: new rule in 

procedural memory

▪ Reduce repeated reasoning Introduction to the Soar Cognitive Architecture, Laird (2022) 
https://arxiv.org/pdf/2205.03854



SOAR: Cognitive cycle - Execution
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▪ Input phase: perception

▪ Elaboration phase: recognition and 

conceptualization

▪ Interpret the situation and suggest operators

▪ Decision phase: use learned or predefined 

preferences to select an operator

▪ Application phase: execute operator

▪ Change goal

▪ Change belief

▪ Execute action

▪ Output phase: action command Introduction to the Soar Cognitive Architecture, Laird (2022) 
https://arxiv.org/pdf/2205.03854



ROSIE: Soar agent for research

38More info about Rosie: https://soar.eecs.umich.edu/rosie/

https://soar.eecs.umich.edu/rosie/


ACT-R: Adaptive Control of Thought – Rational

39

▪ Cognitivist architecture originally developed to 

simulate human experimental data

▪ Maps modules into specific areas in the brain

▪ Memory declarative (facts) and procedural (skills)

▪ Use of production rules

▪ Perception and action managed via buffers for 

vision, motor, etc.

▪ Includes utility learning to refine rule application
ACT-R Research Group

Department of Psychology, Carnegie Mellon University
 http://act-r.psy.cmu.edu/about/



LIDA: Learning Intelligent Distribution Agent
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▪ Repeating cycles  like “heartbeats of 

thought”:

▪ Sensing: Perceive the environment

▪ Attending: Broadcast salient info to the 

global workspace

▪ Deciding: Select an action

▪ Acting and Learning from the outcome

▪ Combines episodic, semantic, and 

procedural memory

▪ Learning every cycle: Update memories

Franklin et al. LIDA: A Systems-level Architecture for Cognition, Emotion, and Learning 
(2013) https://doi.org/10.1109/TAMD.2013.2277589



Part 2:
Deliberation in Robotics



Deliberation
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Deliberation is meant to endow a robotic system with 
extended, more adaptable and robust functionalities, as 

well as reduce its deployment cost.
  (Ingrand & Gallab, 2017)



Deliberation
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Integration of deliberative functions such as:

▪ Planning

▪ Acting

▪ Monitoring

▪ Goal reasoning

▪ Observing

▪ Learning

Bottleneck: 

How to acquire, integrate and maintain 

representations to reason over them?

Félix Ingrand, Malik Ghallab, Deliberation for autonomous robots: 
A survey  (2017) https://doi.org/10.1016/j.artint.2014.11.003 



Part 2.1:
Deliberation in Robotics

CRAM Architecture



CRAM: Cognitive Robot Abstract Machine
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▪ Hybrid cognitive architecture (symbolic 

& sub-symbolic representations & 

processes) 

▪ Introduced by Michael Beetz in 2010 

but it stills in very active development

▪ Designed to address robot 

manipulation tasks in everyday 

activities EASE interdisciplinary research center at the University of Bremen, Germany



CRAM: Cognitive Robot Abstract Machine
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Example Goal: Make a pancake

▪ Get bowl

▪ Crack egg

▪ Stir

▪ Heat pan

▪ Pour mix

▪ Flip

CRAM handles:

▪What to do next

▪What tool to use

▪What went wrong (e.g., “no egg found”)

▪How to recover (e.g., “fetch egg from 

fridge”)



CRAM: Cognitive Robot Abstract Machine
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Beetz et al. Robot manipulation in everyday activities with the CRAM 2.0 cognitive architecture and generalized action plans (2023) https://doi.org/10.1016/j.cogsys.2025.101375

https://doi.org/10.1016/j.cogsys.2025.101375


Perception: RoboSherlock
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EASE interdisciplinary research center at the University of Bremen, Germany

Middleware for perception
▪ Class/instance labels

▪ 6DOF positions

But also:

▪ Functional parts of objects

▪ What object is missing on a scene

▪ Objects contained in another object



Perception: RoboSherlock
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Uses specialized perception modules for different object 

types, environments, and tasks

▪ Visual detection

▪ Semantic knowledge reasoning

▪ Affordance-based inference → what can I do with this 

object?



Perception: RoboSherlock
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▪ Maintains a belief state with virtual reality

▪ Simulate what should be visible

▪ Improve pose estimation

▪ Save computation by guiding attention

▪ CRAM is shifting toward self-supervised 

perception:

▪ Uses episodic memory (NEEMs) to 

learn from experience

▪ Leverages internal models to generate 

training data automatically
Beetz et al. The CRAM Cognitive Architecture for Robot Manipulation 

in Everyday Activities, (2023) https://arxiv.org/pdf/2304.14119.pdf 



Planning: CRAM Plan Language
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▪ Extension of Lisp

▪ Specify how the robot should respond to:

▪ Events

▪ Changes in belief states

▪ Detected failures

▪ Supports plan introspection: the robot can ask itself what it was doing

;; perceive package

(let ((?package-desig(perform

  (an action

      (type detecting)

    (object (an object

            (type open-box)))))))

;; pick-up the package

(perform

    (an action

        (type picking-up)

        (object ?package-desig)

        (park-arms nil)))))



Planning: CRAM Plan Language
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▪ CRAM’s execution engine monitors plans during execution

▪ If something unexpected happens (e.g. missing object), it:

▪ Logs the failure

▪ Adapts the plan

▪ Queries to semantic knowledge to check alternatives or 

correct mistakes



Knowledge Representation and Reasoning: 
KnowRob

54EASE interdisciplinary research center at the University of 
Bremen, Germany

Background 
common-sense 

knowledge



Knowledge Representation and Reasoning: 
KnowRob

55EASE interdisciplinary research center at the University of 
Bremen, Germany

Central set of 
ontologies and 

axiomatizations



Knowledge Representation and Reasoning: 
KnowRob

56EASE interdisciplinary research center at the University of 
Bremen, Germany

Symbolic and 
generalized 

episodic 
knowledge



Knowledge Representation and Reasoning: 
KnowRob

57EASE interdisciplinary research center at the University of 
Bremen, Germany

Abstract 
knowledge from 

physics 
simulator



Knowledge Representation and Reasoning: 
KnowRob

58EASE interdisciplinary research center at the University of 
Bremen, Germany

Logic KB with 
rules for sensor 
and action data, 

logical axioms 
and inference 

rules



Knowledge Representation and Reasoning: 
KnowRob

59EASE interdisciplinary research center at the University of 
Bremen, Germany

Virtual KB to 
parameterize 

motion control 
and path 
planning



NEEMs: Narrative Enabled Episodic 
Memories

60

EASE interdisciplinary research center at the University of 
Bremen, Germany

Learn from experience and update KB



Motor execution: Giskard
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▪ Calculates body movements based on 

idealized, abstract robot capability models

▪ Most motion learned by reinforcement 

learning (NEEMs)

▪ Active research:

▪ Tactile-based manipulation

▪ Optimization for task force and touch 

control (e.g., slicing bread)

Example Goal:
 Keep holding the door and move it 

according to its joint model

Beetz et al. The CRAM Cognitive Architecture for Robot 
Manipulation in Everyday Activities, (2023) 

https://arxiv.org/pdf/2304.14119.pdf 



Metacognition: COGITO

62

▪ Reason about system performance and adapt to improve its effectiveness

▪ Queries, their responses, and the success or failure of actions logged during 

execution

▪ Fully integrated with CRAM Planning: understand subplans and its effects

▪ Use of KnowRob to answer “why” questions

▪ NEEMs to establish causal relationships (motion → environmental change)

▪ Reprogram plans, e.g., close a door pushing with an elbow

Example Question:
  “Can the action goal be achieved?” or “Did the 

action fail because the robot didn’t see the object?”



CRAM: Limitations
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▪ Steep learning curve: Lisp and Prolog/OWL

▪ Plan adaptation is pre-modeled

▪ KnowRob’s logic-based reasoning can become 

computationally expensive for large ontologies or high-

frequency queries



Part 2.2:
Deliberation in Robotics

SkiROS



SkiROS2: Skill-based robot control platform
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▪ Engineering approach

▪ Objective: handle system 

complexity in intelligent systems 

performing industrial tasks

▪ Coordination of partial solutions 

and interoperability across 

different robots

Mayr et al., SkiROS2: A skill-based Robot Control Platform for ROS, (2023) 
https://doi.org/10.1109/IROS55552.2023.10342216 



SkiROS2: Planning
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▪ Task manager: PDDL to find skill 

sequence

▪ Behaviour tree: directed acyclic 

graph → execution of actions

▪ Link nodes with conditions and logical relations 

(executed in sequence, alternative or in parallel)

▪ Actions return success, failure or running

▪ Extended behaviour trees (eBT): add pre and 

post condition nodes → hierarchical task 

network (HTN)
Mayr et al., SkiROS2: A skill-based Robot Control Platform for ROS, (2023) 

https://doi.org/10.1109/IROS55552.2023.10342216 



SkiROS2: Planning – BT + HTN

67Rovida et al., Extended behavior trees for quick definition of flexible robotic tasks. (2017) 
http://doi.org/10.1109/iros.2017.8206598



SkiROS2: Planning – eBT

68Rovida et al., Extended behavior trees for quick definition of flexible robotic tasks. (2017) 
http://doi.org/10.1109/iros.2017.8206598



SkiROS2: Knowledge representation
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▪ Stores knowledge in an RDF graph (OWL)

▪ Ontologies (Core Ontology for Robotics and 

Automation)

▪ Concepts

▪  Properties 

▪  Relations

▪ Enables reasoning and planning

▪ World model shared across robots
Mayr et al., SkiROS2: A skill-based Robot Control Platform for ROS, (2023) 

https://doi.org/10.1109/IROS55552.2023.10342216 



SkiROS2: Skills
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▪ Skill as parameter procedure that 

transform a state

▪ A skill manager per robot

▪ Atomic and compound skills (eBTs)

▪ Semantic description

▪ Parameters (required, inferred, optional)

▪ Pre-, hold-, post-conditions
Mayr et al., SkiROS2: A skill-based Robot Control Platform for ROS, (2023) 

https://doi.org/10.1109/IROS55552.2023.10342216 



SkiROS2: Limitations
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▪ Static knowledge base 

▪ Skill representations are modular and reusable, but hardcoded in plugins

▪ No native support for self-monitoring, metareasoning or advance perception 

(e.g., reflection on failed plans, uncertainty handling)

▪ Does not introspect about why a failure happened or how to revise its strategy



Part 2.3:
Deliberation in Robotics

SysSelf



Our approach
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▪ Capturing knowledge:

▪ Represent and integrate expert and domain-specific knowledge

▪ This enables the robot to directly use sophisticated, pre-existing 

intelligence embedded within its architecture during task execution

▪ Supporting metacognitive capabilities:

▪ Incorporate mechanisms for representing knowledge about their own 

internal states and capabilities

“How can we enhance autonomous robots' 
self-awareness from a systemic perspective 

to make them more robust?” 



Requirements
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▪ Capture system structure

▪ Reuse existing definitions

▪ Value-oriented

▪ Applicable to a variety of systems

▪ Use declarative formal language

▪ Runtime executable

MBSE

CT + OWL



Involved domains
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Knowledge 
Representation 
and Reasoning  

(KRR)

Category 
Theory (CT)

Model-Based 
Systems 

Engineering
(MBSE)



Model-Based Systems Engineering
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Concept of 
Operations

Requirements 
and 

Architecture

Detailed 
Design

Implementation

Component 
integration 

and Test

System 
Verification and 

Validation

Validation

Definition Integration



Knowledge Representation and Reasoning

77



Category Theory
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▪General theory of 

mathematical structures

▪Compositionality

▪Consistency
Bradley et al. Math3ma blog:

https://www.math3ma.com/blog/language-statistics-category-theory-part-3



Category Theory: Basic elements
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▪Category:

▪Objects

▪Morphisms: map between objects

▪Binary operator: composition of morphisms

▪Functor: Map between categories

▪Natural transformations: Map between functors



Category Theory: Basic elements

80



Category Theory: Basic elements

81

Specification OperationSystem



Category Theory: Equivalence
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▪ Morphisms, functors, natural transformations

▪ Yoneda lemma:

▪ Equivalence of two objects in a category from 
relationships

▪ Formal representation of system design alternatives



Metamodel

83

▪ Capability
▪ Component
▪ Goal
▪ Value
▪ Stakeholder

▪ Metrics:
▪ MOE
▪ MOP
▪ TPM

▪ Constraint
▪ Interface

▪ Designed to model-based adaptation to robustly deliver the 
expected value

▪ Main concepts:



Metamodel: Categories

84

▪ Component:
▪ Objects: motors, sensors, controllers, etc.
▪ Morphisms: dependencies and interfaces between components

▪ Capability:
▪ Objects: sense, move, decide, plan, etc. 
▪ Morphisms: dependencies and synergies

▪ Goal: 
▪ Objects: desired position, extract quantity of mineral, etc.
▪ Morphisms: mappings between goals

▪ Value: 
▪ Objects: efficiency, safety, precision, etc.
▪ Morphisms: relations between values



The                         Category

85



Value as Pushout

86

▪Identify designs that provide expected value

▪Value: Benefit at cost provided to stakeholders

▪Pushout: Best approximation of an object satisfying certain 

conditions



Adaptation: Yoneda lemma

87

▪ Adapt: apply a natural transformation (⍺) between two Realization 

Categories which objects are “the same” from a certain perspective



Metrics

88

▪Measure of Effectiveness (MOE) – Value

▪Measure of Performance (MOP) – Capability

▪Technical Performance Measure (TPM) – Component

Notify concerned agents about changes



Complete metamodel
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Metacontrol

90

Architecture of a system using a metacontroller (An adaptive controller).



Usability
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Design 
knowledge

Monitor 
entities

Config file

Config file

https://github.com/robominers-eu/rm2_simulation/blob/main/config/pointcloud_to_laserscan.yaml


Underwater mine robot

92



Applications: Modular Miner robot
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Modular Miner robot

94



Failure in sensor
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LiDAR
/scanEnvironment

Depth 
camera

/pointcloudEnvironment Interface 
adaptor

/scan

New realization: 
Yoneda lemma

“same component”

▪ LiDAR disconnected

▪ Functional redundancy: depth camera

▪ Requires interface adaption: 
point cloud to laser scan



Failure in sensor
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Failure in sensor
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Affected value:

▪ Less point accuracy

▪ Less time efficiency

▪ Less energy consumption

▪ Task completed



Failure in sensor
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Decreased capability
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Decreased capability

100



Decreased capability

101



Decreased capability

102



Mission unreachable

103



Limitations

104

▪ Limited representation

▪ Represent system evolution and risks

▪ Diagnosis

▪ Integration with other cognitive modules

▪ Extend evaluation:

▪ Type of systems, metrics, engineering effort

▪ Steep learning curve

▪ Model-2-model transformations



Part 3:
What is next



coresense.eu

A hybrid cognitive 
architecture 
For deep understanding and awareness



CoreSense: Problem

107

▪ Current limitations in intelligent robots:

▪ Shallow understanding → rigid, predefined behaviours

▪ Frequent failure in open or unexpected environments

▪ CoreSense aims to provide:

▪ Deeper, dynamic, multi-actionable representations

▪ Distributed cognitive capabilities

▪ Increased adaptability, safety, and reliability



CoreSense: Approach

108

▪ Hybrid: Symbolic engineered models combined with 

data, geometrical, mathematical, etc.

▪ Exploit at runtime engineering model

▪ Value-oriented: prioritizes delivering the expected 

value to the end user

▪ Model-centric: used during the whole life-cycle



CoreSense: Aggregate of 
cognitive modules

109



CoreSense: Cognitive process

110

Distributed execution of cognitive functions 
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CoreSense: Fundamental essential



CoreSense: Reusability and 
applicability

112

▪ Reference architecture for cognitive robotic systems

▪ Wide applicability: manufacturing mobile manipulators,  

inspection drones, social robots

▪ ROS 2 compatible

▪ Supports both greenfield and brownfield system 

integration

▪ Architectural framework: methods, patterns, and tools



Part 3.2:
What is next

Limitations and future work



Challenges and limitations of current 
Cognitive Architectures

114

▪ Most effort is invested in high-level abilities:

▪ Action selection, memory, reasoning, metareasoning

▪  Incomplete support for full general cognitive capabilities

▪  Perception often downplayed:

▪ Lack of deep conceptualization

▪ Weak symbol grounding

▪ Unrealistic attention mechanisms → Limited understanding

▪  In robotics, focus is on navigation and manipulation

▪ Still lacks integration with perceptual understanding



Challenges and limitations of current 
Cognitive Architectures

115

▪ Lack of experimental validation

▪ Few standardized benchmarks or metrics

▪ Memory handling issues

▪ Memory often treated as discrete snapshots with timestamps, limiting 

temporal reasoning and life-long learning

▪ Scalability problems

▪ Symbolic knowledge bases struggle with real-time demands



AI trends and Cognitive Architectures
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DL capable of solving AI? 

Google DeepMind, Facebook AI research, etc. are working in:

▪ Solving important issues in AI: natural language, perceptual 

processing, cognitive abilities in limited domains

▪ No unified model of intelligence

▪ Approach: AI too complex to be built at once, focus on specific tasks



Future Work
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▪ Advanced memory models: Incorporate continuous, context-aware, and 

hierarchical memory representations

▪ Improved usability and integration tools: Create developer-friendly toolkits 

and middleware for seamless deployment

▪ Adaptive and Self-Aware Systems: Enhance metacognition and 

introspection for robust autonomous behaviour under uncertainty

▪ Develop hybrid representations and reasoners at different level of 

abstraction

▪ System-wide capabilities



Part 3.3:
What is next
Conclusions



Take home ideas

119

▪ Cognitive architectures are reusable blueprints enabling robots to perceive, 

reason, learn, and act using knowledge.

▪ Classical systems (SOAR, ACT-R, LIDA) laid the groundwork but have limitations 

in real-world robotics

▪ Robotics frameworks (CRAM, SkiROS, etc.) are deployed in real robot and excel at 

specific tasks but face some limitations in scalability, adaptability, and usability 

challenges

▪ SysSelf approach advances robot self-awareness and metacognition but is not a 

full architecture, just a system-level module

▪ The CoreSense project pushes forward with hybrid architectures to overcome 

these issues
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Achieving deep, adaptive understanding in complex environments 
demands overcoming current limits in perception, knowledge 

integration, and memory management.

 Hybrid cognitive architectures offer a promising path toward 
building reliable and robust autonomous robots.
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