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@ Wishlist

= Model the robot, its mission, and its environment

=" Enable adaptive behaviour in challenging conditions
= Support different systems

» Promote understanding, not just action

= Robust autonomy
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@ Wishlist

= Model the robot, its mission, and its environment

\
» Enable adaptive behaviour in challenging conditions oy
. O
= Support different systems -
/
» Promote understanding, not just action Cognitive
Architecture

= Robust autonomy
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Outline

Part 1: Foundations of
Cognitive Architectures

= What are Cognitive
Architectures?

= Core capabilities

= Classical examples:
SOAR, ACT-R, LIDA

Intelligent
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Part 2: Deliberation in
Robotics

= CRAM /KnowRob
= SkiROS

= SysSelf

Part 3: What is Next

= CoreSense

= | imitations and Future
work

= Conclusions
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Part 1.1:

Foundations of Cognitive Architectures
What are Cognitive Architectures?
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What is a cognitive architecture

Reusable blueprint that defines the core components of an intelligent system

Reason

Applicable to
different tasks
and/or domains

Bl ,fk\
obotics
Lab 10

Stable over time



@ What is a cognitive architecture

Supported knowledge:

= Memory (short- and long-term): Storage of beliefs, goals, and
knowledge

= Representation: Internal models of the environment, self, or task

" Functional Processes: Mechanisms that operate over
representations (e.g., reasoning, planning, learning)
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@ The building analogy
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Approaches in cognitive architectures

Cognition

Model human
mechanisms
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science
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Perspectives in cognitive architectures

Cognitive
perspectives

A4 A4 \ 4

Symbolic Hybrid Emergent
(cognitivism) (connectionist)
L : Developin

Mind: manipulator <€ > interaction with the

of symbols )
environment

Intelligent
Robotics
Lab 15



o

Intelligent vs cognitive system

What’s the difference?

= Both may use memory, control, I/0O, internal models
= But cognitive systems evolve over time
=" They update internal knowledge and adapt behaviours

" |ntelligent systems are often fixed and task-specific

16
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Intelligent vs cognitive system

= Cognitive systems are not just pipelines = integrated
systems

" They must manage and use different types of knowledge:

= Perception: external world
=" Planning: possible futures
= Memory/Learning: past experiences

" Communication: coordination

17



@ Cognitive system core: Knowledge

" How does the system access knowledge?
" How does it reason about it?

" How does it use it to make informed decisions?

A cognitive system must know when and
how to use what type of knowledge,
depending on the task and context.

18
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Part 1.2;

Foundations of Cognitive Architectures
Core Capabilities
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CORESENSE Research issues and challenges (2006)

@ C O re C a p a bi liti e S Langley et al., Cognitive architectures:
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[ Sense

)

= Signal vs. noise: Identify critical information in
complex, cluttered environments

= Understanding: interpreting what’s perceived to
support reasoning and action

[

)

\

Filter

)

= Attention management: Allocate limited perceptual
resources to detect and prioritize relevant signals

= Beyond raw data: Convert sensor inputs into usable
representations

Perception : Transforming sensory data

Perception

-

Recognition
and
Categorization

~

[ Decision-

making

)

Prediction and
monitoring

|

|
[ Planning }

|
[ Learning }

J
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RepresentJ

-

Reasoning and
belief
maintenance

~

Execution and
action
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-~ Recognition and Categorization:
From data to concepts

Abstract processed perceptions: B
4 - )
) ) o Recziréltlon
" [ntegrate multi-sensor data in a unified e
_
mOdel [ Decilsion- ] [ Predictlion and ]
making monitoring
= Pattern matching (e ] | Lear'n.ng |
u Exa m pleS: ( Reasonling and b
belief
= Reading: letters » words > meaning Nl
= Service robot: kitchen area vs. seating area > - ton

correct delivery

Intelligent
Robotics
Lab
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Decision-making: Reactive vs.
Deliberative

Reactive decisions:

= Fast, context-driven

= Based on recognize-act cycles

Perception

-

Recognition
and
Categorization

~

Decision-
making

|

Deliberative decisions:

Prediction and
monitoring

|

Planning

= Slow, goal-oriented reasoning

= Evaluate possible actions against goals and
constraints

\( Select best
L alternatives

Determine )
valid actionsJ

Intelligent

. Robotics
Lab

[ Learning }

-

Reasoning and
belief
maintenance

~

Execution and
action
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@ Planning: Goal-directed strategies

= Achieve goals in new situations
= Model the world: predict action effects

=" Plan representation: ordered actions +
expected effects > support subsequent steps

= Plan execution: translate high-level steps
Into low-level motor commands

= Replanning: not just fault-tolerance, also
better ways to reach goals

Intelligent
Robotics
Lab
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execution

® Prediction: use models to estimate effects of actions

= Map (state x action) > expected outcome

Predicting outcomes & monitoring

Perception

-

Recognition
and
Categorization

~

= Explicit action models (e.g., classical planners) [ Decision- ] [ Predictionand |
making monitoring
| |
- M On ItOI’Ing [ Planlning } Learlning
- ' N
. Reasoni.ng and
= Compare predicted vs. actual outcomes | betef
|
= Trigger adaptation or replanning if needed Fxecttion anc
action
Intelligent

e 2




-~ Predicting Outcomes & Monitoring

Execution
= | earning through monitoring : Pe“’jp“”
4 N
Recognition
= Update models when predictions fail oo o
o, e Decilsion- [ Predictlion and |
u MetaCOgnlthn { making ] | monitoring |
| |
= Reflect on internal processes (resources, confidencg, menne ] | e
( Reasoning and b
progress) belief
maintenance
: . : |
= Enables self-awareness and adaptive decision-making (" Executionand |
- N L action

Metacognition

Intelligent f . X . .
.R°?§5'°s Predmtmn]——{ Action }——{ Monitor ]——-{ Update 26
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@ Learning

= Core process:

= Remember: Store past experiences

Perception

-

Recognition
and
Categorization

~

= Reflect: Analyse to find patterns .

Decision- ( Prediction and
. . . . . { making ] monitoring
= Generalize: Apply insights to new situations | |
[ Planning } Learning
= Learning st ies: T remomges ]
g S rategleS. Reasoning and
belief
maintenance
= Specific experiences that may be generalized later |
Execution and
= | earning from experience
.'F;‘;etiggt?g; = Metareasoning for self-directed, strategic learning -
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Reasoning: Drawing conclusions

from beliefs

= Reasoning vs. Planning

= Knowledge representation: encode relationships

=" Planning: Select actions in the world to achieve goals

Perception

-

Recognition
and
Categorization

~

= Reasoning: Derives internal conclusions from beliefs[

|
Decision-
making

)

Prediction and
monitoring

|

|
[ Planning }

®» Inference mechanisms:

Intelligent
Robotics
Lab

= Primarily deductive reasoning

= May also support abductive or probabilistic inference

|
[ Learning }

r

Reasoning and
belief
maintenance

~\

Execution and
action
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-~ Execution: Turning decisions into

CORESENSE

actions

= Goal: Ensure decisions lead to desired real-world

results =2 how to act

Perception

|
-

-

Recognition
and
Categorization

" EXGC UtIOn MOd es. { Decision- ] [ Prediction and ]
making monitoring
= Closed-loop (reactive): continuous feedback & | remns |  toaming |
adjustment ( Reasoning and b

= Uncertain or dynamic environments

= Open-loop (automatized)

Intelligent
R = Stored procedure

belief
maintenance

N
Execution and
action
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Part 1.3:

Foundations of Cognitive Architectures
Classical examples

Intelligent



@ SOAR

= Developedinthe 1980s to model all

aspects of cognition

= Key Features:
= Symbolic knowledge representation

" Problem solving via production rules

= | earning through chunking (creating

new rules from experience)

Intelligent
Robotics
Lab

Symbolic Long-Term Memories

Procedural Semantic Episodic
,  — X
Reinforcement || Chunking | Semantic Episodic
Learning Learning Leaming
L 4 4 L 4
) J ]
2 Symbolic Working Memory E -
E e g &
E & g
-
— |—| [
Pcrcnptua] 5T™ » Perceptual LT Memory

I Body ||

Y

Introduction to the Soar Cognitive Architecture, Laird (2022)
https://arxiv.org/pdf/2205.03854
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Memory systems in SOAR

=" Procedural Memory: rules and skills
" Semantic Memory: general knowledge
= Episodic Memory: past experiences

= Working Memory: active beliefs and goals

32



@ SOAR: Perception and the Spatial
Visual System

" Processes 2D and 3D visual Symbolic Long Term Memories

Procedural Semantic Episodic

input into symbolic form =1 | | Dy

 S— 3
o Reilﬁ:nn::nt](:hunking_l ﬂ
= Mapped Capabilities: T T Y y v

] _J
= Symbolic Working Memory - g
Z X
. E [*” g
= Perception Z 5 8
il l'TI 1
= Recognition and categorization P*““]T’ST” *—>] Perocptual LT Memory
Perception \{ Mental Imagery
3
I Body ||
' I O bjeCt 045 haS Introduction to the Soar Cognitive Architecture, Lairl'cllr (2022)
. 'Fg‘;%nggé mage color 35 https://arxiv.org/pdf/2205.03854
. 5
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SOAR: Reasoning and Decision-Making

= Rules to elaborate the current state:

Symbolic Long-Term Memories

= Adds beliefs e Semanic Epleodio
= Evaluates conditions =:%: d{bcffj% Dy
» Proposes operators (possible ““f&'ﬁf’i‘;‘“““‘““"’”ﬁ' | | Learnin
actions) s Symbolic wmg Memory Ty
= |f no clear choice > Impasse E»| - "E
= Triggers a substate (a new Pmm,sm . pmmm-mw

reasoning context)

= Allows deeper reflection on

I Body ||
missing or conflicting knowledge . e Areh Y
' Introduction to the Soar Cognitive Architecture, Laird (2022)
. 'Fg‘;%:nggg https://arxiv.org/pdf/2205.03854
a
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SOAR: Planning

= Hierarchical and flexible planning

Symbolic Long-Term Memories
Procedural Semantic

Episodic
= Decomposed goals ——
=5 | | o || D
, ,  — X
= Separate reasoning spaces Reinforcement | Chunking Bpaati
R
= Each sub-state as a mental 4 Symbolic Working Memory Ty
E > Eg:
workspace )L — — g
. .
» Real-time adaptability ™ Rercepual LT Memory

\ y——
= Result: Plans are built dynamically,

I Body ||
L
Introduction to the Soar Cognitive Architecture, Laird (2022)
. neigent StEP DY Step
Robotics

https://arxiv.org/pdf/2205.03854
Lab
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@ SOAR: Learning

= Reinforcement learning: numeric

. . (" Symbolic Long-Term Memories )
preferences to better-performing actions Procedural Semantic Episodic
=5 | [t )
= Episodic memory: snapshots of past , —— b >,
. . ] . Remlbrc?ment Chunking Sc:m,ar_ltic Epim_:li.c
situations, which can be retrieved and fomie J e | (Leamine
Symbolic Working M —
reused in similar contexts il e
: A
= Chunking (procedural learning) | Y | |
Perceptual 5TM «—— Perceptual LT Memory

_ . . ,
Solved impasse: new rule in \ —— -

procedural memory

Body
I v
. Introduction to the Soar Cognitive Architecture, Laird (2022)
. intelligent & Reduce repeated reasoning https://arxiv.org/pdf/2205.03854
Lab 36
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SOAR: Cognitive cycle - Execution

® |nput phase: perception

= Elaboration phase: recognition and Symbolic Long-Term Memories
Procedural Semantic Episodic
conceptualization == Cfﬁbﬁ% %]
= |nterpret the situation and suggest operators r — )
rREi.t‘LfD.l‘m?mﬂtlt]ChunkinEl Episodic
= Decision phase: use learned or predefined %rj il § e § Leamine
~ I — —
preferences to select an operator = Symbolic Working Memory
E [»
= Application phase: execute operator < g
— r—|+ . —
= Change goal Perceptual STM +—| Perceptual LT Memary

" Changs belef o) (e

Body

. L )
= 0utput phase: action command Introduction to the Soar Cognitive Architecture, Laird (2022)

. E\é%g%?g; https://arxiv.org/pdf/2205.03854
Lab 37
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ROSIE: Soar agent for research

Teaching Deliver

More info about Rosie: https://soar.eecs.umich.edu/rosie/

38
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@ ACT-R: Adaptive Control of Thought — Rational

= Cognitivist architecture originally developed to

Visual . Motor
. . ~—— Environme i -
simulate human experimental data Module Module
= Maps modules into specific areas in the brain
S ACT-R Buffers _:
= Memory declarative (facts) and procedural (skills)
= Use of production rules F— - i ‘ ST
Memory ™ mitching I
= Perception and action managed via buffers for *
o Production
vision, motor, etc. execution

= |ncludes utility learning to refine rule application

ACT-R Research Group

Intelligent Department of Psychology, Carnegie Mellon University
Robotics
Lab http://act-r.psy.cmu.edu/about/ 39
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= Repeating cycles like “heartbeats of
thought”:

= Sensing: Perceive the environment

= Attending: Broadcast salient info to the

global workspace
= Deciding: Select an action

= Acting and Learning from the outcome

= Combines episodic, semantic, and

procedural memory

.E\teéli%?nt- Learning every cycle: Update memories
00otIcs

la

LIDA: Learning Intelligent Distribution Agent

WORKSPACE

Structure Building

Conscious Contents

\Queue

Current Situational Model

Add Conscious Content

Add Coalitions -
_>

Form Coalitions

Codelets

Veniral
Sensory Stream

Memory

L
-

Sensory Locc]. "
stimulus Associations Global
Workspace
Internal & P i
erceptual ient £ 4
External Dorsal = ianson Declarative Aftention
; Stream Associative Episodic Momor Codelets
Environment Memory Y
Actuator it i Spatial Episodic Atentioncl
Execution Learning Learning Learning
‘9;,5 Update Procedural Recruit
%, Behaviors Learning Schemes
© ;
i = ) i ( ‘\ Short Term
or nsory : nslaniic o
Plan xg:?r Miotor ;Z‘fg\:‘? Action | schemes Procedural B wotem
Execution Memor msieciOa Gonavion) i
Y 4_, . Conscious

Franklin et al. LIDA: A Systems-level Architecture for Cognition, Emotion, and Learning

(2013) https://doi.org/10.1109/TAMD.2013.2277589
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Part 2:
Deliberation in Robotics
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Deliberation

Deliberation is meant to endow a robotic system with
extended, more adaptable and robust functionalities, as
well as reduce its deployment cost.

(Ingrand & Gallab, 2017)
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Deliberation

Integration of deliberative functions such as:

Goal reasoning

= Planning Learning ¥

Planning

Mission
Criteria Users
\ Objectives \

= Acting

Models, data &
knowledge bases

= Monitoring

= Goalreasoning

. Actin Observin Monitorin,
" Observing g serving g
. S:E;E;;\\:edback ?,Z]tjiilzsg Signals Mgcl;iitg;isly ﬁ odhack
= [earning
Robots platform
7}
/ o
Environment
Bottleneck:
. . . . Félix Ingrand, Malik Ghallab, Deliberation for autonomous robots:
How to acquire, Integrate and maintain A survey (2017) https://doi.org/10.1016/j.artint.2014.11.003

representations to reason over them?

. Ir\l;mt%lligent
obotics
Lab 43
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Part 2.1:
Deliberation in Robotics
CRAM Architecture



@ CRAM: Cognitive Robot Abstract Machine

= Hybrid cognitive architecture (symbolic
& sub-symbolic representations &
processes)

= |Introduced by Michael Beetz in 2010
but it stills in very active development

= Designed to address robot

manipulation tasks in everyday

a Ct IVITI eS EASE interdisciplinary research center at the University of Bremen, Germany

. Ir\l;mt%lligent
obotics
Lab 45
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CRAM: Cognitive Robot Abstract Machine

Example Goal: Make a pancake  cRAM handles:

" Getbowl =\What to do next

= Crack egg ="\What tool to use

= Stir s\What went wrong (e.g., “no egg found”)
= Heat pan "How to recover (e.g., “fetch egg from

= Pour mix fridge”)

= Flip

46
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CRAM: Cognitive Robot Abstract Machine

COGITO
Metacognition

[

Introspection ]

[

Self-programming ]

KnowRob 2.0

c\“es,\ion answe,,ng

What, why, how?

l

Plan Executive

el [ Generalized action plan ]

Contextualize

Answer

perception

Body motion query

Action
Designator N
v
( Motion plan |

1

Motion specifications

b

l

generalized
knowledge

(episodic memory)

Giskard

RoboSherlock
Perception Executive

Action Executive

Robot experience

Intelligent
Robotics
Lab
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Perception: RoboSherlock

. . - A Y
(an object (an object
Middleware for perception e iris RO
(shape box) (sha':re b:»f) - )
. location t able (color yellow) ( color green
= Class/instance labels fcmuf;'ﬁf.%ﬁfé&'eﬂfce-»’ 2 (location (next-to (object (type ‘Juice?)
)
\ J
= 6DOF positions po— (an object
( an object >
( J o1 :ch'::-[lrabel 'lkz:; )glass')
plane co anspar
But also: g:emc'emsabcd) (shape round) b
. . kitchen_island_counter_top)) §$ i:n:nrmonzlr!))
= Functional parts of objects

= What objectis missing on a scene

= Objects contained in another object | (anobj-par (type Handie)
(semantic-entity upper_drawer_handl

(pose (x y z qx qy qz qw)

(part-of (an object (type drawer))

(an object

(type ‘Plate’)
(color white)
(shape round)

(size medium)

Q

(shape flar)

EASE interdisciplinary research center at the University of Bremen, Germany

Intelligent
Robotics
Lab
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Perception: RoboSherlock

Uses specialized perception modules for different object

types, environments, and tasks
" Visual detection
= Semantic knowledge reasoning

= Affordance-based inference - what can | do with this

object?

50



9 Perception: RoboSherlock

= Maintains a belief state with virtual reality
= Simulate what should be visible
" [mprove pose estimation

= Save computation by guiding attention

= CRAM is shifting toward self-supervised
perception:
= Uses episodic memory (NEEMs) to

learn from experience

= [everages internal models to generate

51

Robotics
la

..ntemgem training data automatically

Beetz et al. The CRAM Cognitive Architecture for Robot Manipulation
in Everyday Activities, (2023) https://arxiv.org/pdf/2304.14119. pdf
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Planning: CRAM Plan Language

= Extension of Lisp ;; perceive package
(let ((?package-desig(perform
= Specify how the robot should respond to: (an action

(type detecting)
(object (an object

= Fvents (type open-box)))))))
;; pick-up the package
= Changes in belief states (perform
(an action
= Detected failures (type picking-up)

(object ?package-desiq)
(park—-arms nil)))))

= Supports plan introspection: the robot can ask itself what it was doing

52
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Planning: CRAM Plan Language

= CRAM’s execution engine monitors plans during execution

= |[f something unexpected happens (e.g. missing object), it:
= | ogs the failure
= Adapts the plan

= Queries to semantic knowledge to check alternatives or

correct mistakes

53
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Knowledge Representation and Reasoning:
KnowRob

question enswer, Background
ed lan
%0/ common-sense
‘\\)\)ﬂ reason,-ng

s soiee knowledge
imer A& A symbolic

ekl knowledge

base \
\ ontology/v

generalized

knowledge
xiomatizations

&
a
data
structures

perception
bujyiea)

collections
of
A o episodic
@CO/-O:- e (e memory
INg episodic ™

observing

reading

EASE interdisciplinary research center at the University of o4
Bremen, Germany
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Knowledge Representation and Reasoning:
KnowRob

0‘\seg,\:'\on aNswe;

og.\c_,voased la”Que
A\

\ ” ;

.
:Norl; /\ks Owle(;lgce

ontologies and
\ont(;ogy gerreTaized S axiomatizations

knowledge
axiomatizations

perception

structures

collections

of
: episodic
observing ; . . ((\0 memory
reading
Intelligent
Robotics

Lab

EASE interdisciplinary research center at the University of
Bremen, Germany
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Knowledge Representation and Reasoning:
KnowRob

0‘\seg,\:'\on aNswe;

og.\c_,voased la”Que
A\

\ ” ;

O /—\ .

N R Sym bollg and
S worl fusle : generalized
8— '\‘ontolOgy{v generalized = e p | SO d |C
U & knowledge
= axiomatizations
o) ¢ knowledge

data
structures

collections
of
episodic
‘Q
C memory

observing

reading
Intelligent
. Robotics
Lab

a

Oref; o
"ding episodic mef™

EASE interdisciplinary research center at the University of
Bremen, Germany
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Knowledge Representation and Reasoning:
KnowRob

0‘\seg,\:'\on aNswe;

g.\c_,based la”Que

= id reas % /
0 ony
P ing

_ 4. Abstract
c alz?r knowledge
S & ~ se Ry % knowledge from
g e &2 physics
GD)_ axmma%zatlons Q Slm Ulator

data
structures

/// collections

of
: episodic
observing i Ordl; O

memor
: : AW emory
reading
Intelligent
Robotics
Lab

EASE interdisciplinary research center at the University of
Bremen, Germany
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0‘\seg,\:'\on answe,.l-l7

g.\c_,based la”Que

\O ) % /
\Q reason;
\Qﬁav nhQQ

(e symbolic
ekl knowledge

base
\

ontolog
&
axiomatizations

:

data
structures

generalized
knowledge

perception
bujyiea)

collections
of
: episodic
observing ;

memory
reading

EASE interdisciplinary research center at the University of
Bremen, Germany

Knowledge Representation and Reasoning:
KnowRob

Logic KB with
rules for sensor
and action data,
logical axioms

and inference
rules

58
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Knowledge Representation and Reasoning:
KnowRob

0‘\seg,\:'\on aNswe;
.c-pased lan

o RER gL’Gg@ /
\ on;

Wof nhQQ

O N Vi
: irtual KB to
imer AN bl
\ base \

parameterize
ontology generalized o 2] motion control

knowledge
axiomatizations an d p ath

c
=
LJ
a
)
O
b
)
o

planning
structures
collections
of
: episodic
observing ; . . ((\0 memory

reading
Intelligent
Robotics

Lab

EASE interdisciplinary research center at the University of
Bremen, Germany
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-~ NEEMSs: Narrative Enabled Episodic

CORESENSE

Memories

Learn from experience and update KB

Intent To represent what kinds of in-
teractions an object can partic-
ipate in. Physical Object
Competency What can this object be used
Questions for? Can this object interact
with others in a particular Disposition
way?
Defined in SOMA.owl

hasDisposition ( J isDispositionOf

Expression Meaning
has_disposition(x,y) y € &/ is a disposition of x € &/

Intelligent
Robotics
Lab

EASE interdisciplinary research center at the University of
Bremen, Germany
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Motor execution: Giskard

Example Goal.:
Keep holding the door and move it

idealized, abstract robot capability models according to its joint model

= Calculates body movements based on

= Most motion learned by reinforcement

learning (NEEMSs)

= Active research:
= Tactile-based manipulation

= Optimization for task force and touch

control (e.g., slicing bread)

Intelligent Beetz et al. The CRAM Cognitive Architecture for Robot
. Robotics Manipulation in Everyday Activities, (2023) 61
Lab https://arxiv.org/pdf/2304.14119.pdf
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Metacognition: COGITO

Example Question:
“Can the action goal be achieved?” or “Did the
action fail because the robot didn’t see the object?”

Reason about system performance and adapt to improve its effectiveness

Queries, their responses, and the success or failure of actions logged during

execution
Fully integrated with CRAM Planning: understand subplans and its effects
Use of KnowRob to answer “why” questions

NEEMs to establish causal relationships (motion = environmental change)

= Reprogram plans, e.g., close a door pushing with an elbow
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@ CRAM: Limitations

= Steep learning curve: Lisp and Prolog/OWL
= Plan adaptation is pre-modeled

" KnowRob’s logic-based reasoning can become
computationally expensive for large ontologies or high-

frequency queries
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Part 2.2:
Deliberation in Robotics
SkiROS



" Engineering approach

= Objective: handle system
complexity in intelligent systems

performing industrial tasks

= Coordination of partial solutions
and interoperability across

different robots

e SKIROS2: Skill-based robot control platform

[ Ontologies n [ Scene ] [ Skill Libraries n
\ | \ |

Load Load

‘Skill A
Skill
Manager

Jut ot
=gl

SKill B

World Model

U

SR
A
Y
¢
> 5
-
@
e
w
=
T
o
w
fn)
c
Robot Control
Robot Control
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e SKiROS2: Planning

= Task manager: PDDL to find skill

segquence

= Behaviour tree: directed acyclic

graph - execution of actions

= Link nodes with conditions and logical relations

(executed in sequence, alternative or in parallel)

= Actions return success, failure or running

= Extended behaviour trees (eBT): add pre and
post condition nodes = hierarchical task

Intelligent netWO I’k (HTN)
. Robotics

la

\ ]

Load f)

Skill
Manager

Skill A

SKill B

[

[ Task Manager

\ A

Planning
Goal

|

Manufacturing
Execution Sytem

>

< - - -RobotControl _ _____

\/
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SkiROS2: Planning — BT + HTN

— —
Low Drive Drive Pick Place
battery (home) (box) (object) (kit)

g Pick ] Action
S arm, gripper, box, obj D Task
£ I—I - Temporal constraint

AN -»  Causal constraint
g PR
F gl el o) ArmMotion Register GripperCtrl GripperCtrl
E (arm, obsPose) /™| (abj, graspPose)| |(gripper, open) (gripper, close)

T
I Locate | i
= (box, obj, obsPose)} -—------ L

JL
2 N
®
z GripperCtrl Locate MotionPlan i~ ExeMove Register GripperCtrl ~ MotionPlan =~ ExeMove GripperCtrl
g; gripper, close box, obj, obsPose (obsPose, plan) (arm, plan) (obj, graspPose)| ~ |(gripper, open obsPose, plan (arm, plan) gripper, close
[ =
i
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SkiROS2: Planning — eBT

Standard execution

— drive

build_observation_pose |

— pick —

gripper oc |

move arm(Observe) — plan move |

move exe

: r%istratinn |

! build grasping pose |
[

1 move arm(Grasp) —

S
o
S
3
=
47}

move_exe

| hold {—_gripper_oc_|

{ move_arm(Home) — plan_move |

—__place — | locate kit |

— build_placing_pose |

|| move_arm(Place) — plan_move |
—__release | gripper oc |

{ move_arm(Home) — plan_move |

Optimized

locate kit

build_observation_pose |

move arm(Observe) — plan_move |

— build_grasping_pose |

plan move |

——{ move_arm(Grasp) —

plan move

— hold f—_gripper_oc_|

move_arm(Home) — [ move exe |

build_placing_pose |

plan_move

move arm(Place) — | move exe |

release | gripper_oc |

move arm{Home) — | move exe |

Intelligent
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SkiROS2: Knowledge representation

= Stores knowledge in an RDF graph (OWL)

= Ontologies (Core Ontology for Robotics and

Automation) Subject Predicate Object
= Concepts skiros:Container rdfs:subclassOf skiros:Location
= Properties skiros:DriverAddress rdfs:subPropertyOf  skiros:DeviceProperty
" Relations skiros:Scene-0 skiros:contains skiros:Location-1
* Enables reasoning and planning [skims:Rnbnt—Z skiros:at skiros:Location-1 ]

Mayr et al., SkKIROS2: A skill-based Robot Control Platform for ROS, (2023)

Intelligent
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9 SkiROS2: Skills

= Skill as parameter procedure that

transform a state
= A skill manager per robot
= Atomic and compound skills (eBTs)

= Semantic description
= Parameters (required, inferred, optional

= Pre-, hold-, post-conditions

Intelligent
Robotics
Lab

[ pre ] o [postoonsiions
x| Holdcondition Check | S
[} L
5| ——=|0©
c §
S =
= o
E c
‘ ;
o S
) \ (O =

Mayr et al., SkKIROS2: A skill-based Robot Control Platform for ROS, (2023)

https://doi.org/10.1109/IROS55552.2023.10342216
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SkiROS2: Limitations

= Static knowledge base
= Skill representations are modular and reusable, but hardcoded in plugins

= No native support for self-monitoring, metareasoning or advance perception

(e.g., reflection on failed plans, uncertainty handling)

= Does notintrospect about why a failure happened or how to revise its strategy
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Our approach

= Capturing knowledge:

= Represent and integrate expert and domain-specific knowledge

" This enables the robot to directly use sophisticated, pre-existing

intelligence embedded within its architecture during task execution

= Supporting metacognitive capabilities:

" |ncorporate mechanisms for representing knowledge about their own
internal states and capabilities

“How can we enhance autonomous robots’
self-awareness from a systemic perspective
.E‘é%t&%?é‘é to make them more robust?”

la
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Requirements

= Capture system structure
= Reuse existing definitions

= \alue-oriented

S SYSSELF

— MBSE

= Applicable to a variety of systems

e

= Use declarative formal language

= Runtime executable

CT+OWL
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Involved domains

Knowledge
Representation
and Reasoning

(KRR)
Model-Based
Systems Category
Engineering Theory (CT)
(MBSE)

Intelligent
Robotics
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Model-Based Systems Engineering

Concept of
Operations

ﬁ

Validation

Requirements System
and ——l Verification and
Architecture Validation
e el : Component .
Definition . : Integration
Deta.lled ) Integration 9
Design
and Test

Implementation
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Knowledge Representation and Reasoning
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Category Theory

sGeneral theory of
i bensdfil ead domucat
. mof\:x}ﬂdna/v /\/ . N "'fi“dma red-veo&
mathematical structures IR A
S h Y

whi TN
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Category Theory: Basic elements

sCategory:

=Objects

sMorphisms: map between objects

=Binary operator: composition of morphisms
=sFunctor: Map between categories

"Natural transformations: Map between functors
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Category Theory: Basic elements

A > Y
f f’
v Ly
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Category Theory: Basic elements

Specification System Operation
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Category Theory: Equivalence

= Morphisms, functors, natural transformations
" Yoneda lemma:

= Equivalence of two objects in a category from
relationships

=" Formal representation of system design alternatives
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Metamodel

= Designed to model-based adaptation to robustly deliver the

expected value

= Main concepts:

= Capability

= Component
= Goal

= \Value

= Stakeholder

Intelligent
Robotics
Lab

= Metrics:

= MOE

= MOP

= TPM
= Constraint
" Interface

S SYSSELF
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Metamodel: Categories S SYSSELF

= Component:
= Objects: motors, sensors, controllers, etc.
= Morphisms: dependencies and interfaces between components

Capability:
= Objects: sense, move, decide, plan, etc.
= Morphisms: dependencies and synergies

= Goal:
= Objects: desired position, extract quantity of mineral, etc.
= Morphisms: mappings between goals

Value:
= Objects: efficiency, safety, precision, etc.
= Morphisms: relations between values
84
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Value as Pushout

=|dentify designs that provide expected value

=\/alue: Benefit at cost provided to stakeholders

S SYSSELF

=sPushout: Best approximation of an object satisfying certain

conditions

Component —— Goal

|

Capability —— Value

main_cost

N4
Expected_value
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Adaptation: Yoneda lemma S SYSSELF

= Adapt: apply a natural transformation (a) between two Realization

Categories which objects are “the same” from a certain perspective

é

RN

Realization |J @ Realization’

N~ 7

6."
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Metrics S SYSSELF

sMeasure of Effectiveness (MOE) - Value
sMeasure of Performance (MOP) — Capability

sTechnical Performance Measure (TPM) - Component

Notify concerned agents about changes
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Complete metamodel

Interface K
of hasC Value
isType -V
Subclass of
ComponentSW - H ===
;omponentStatus] H ._L -
Subclass of :
' B Subclass of
hasInterface '." hasGoalStatus\Value
: la
SUb? @ hasComponentStatus
TechnicalPer... H s
: GoalStatus
easures ComponentPs
R hasGoalStatus
ToGoal
Subclass of

H realizes

H . isAlignedWith

H isRealizedBy

oo - ) interestedin Stakeholder

; apability Capability contributes ToValue

Subclass of
H measures\Value
measuresReachedCapability
: composableWithCg
(symmetri MeasureOfEffe...
MeasureOfPer...

affectsMetric

(

affectsInPossitive
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Metacontrol

affected sub-system

v
specification
:@etaccntrolle% ———{ Diagnosis }————

‘ contingency disturbance

V < ¢

S SYSSELF

Supervision

output

r's
referenceb[ Controller }——————+[ System }

» action command

Execution

Architecture of a system using a metacontroller (An adaptive controller).
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Design
knowledge
T , Monitor
S entities
. SysSelf
' Metamodel
system fummmememmmmanaa. . affected -------Y--ooooo \
knOWlEdgEQHetacontrollerF Sntily = oObserver |
adaptation
candidate
. Adaptation
Config file . executor |
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https://github.com/robominers-eu/rm2_simulation/blob/main/config/pointcloud_to_laserscan.yaml

@ Underwater mine robot LINESSLU TN
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Applications: Modular Miner robot

|l | i

|
fl ‘ :-" .
Al

ROBOMINERS NS
A I

LAY

| =

—
4 TR
|

ROBO

MINERS
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Modular Miner robot

ROBO

MINERS

Y
Screw-based
Locomotive

Module

Y

[ Mining Head J

—————— Locomotive SIS S
Module

Track-based
Locomotive
Module

Robo Miner Concept

|
|
¥

[ Sensing Head J
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Lo ROBO
Failure in sensor MINERS

= | iDAR disconnected

" Functional redundancy: depth camera

= Requires interface adaption:

point cloud to laser scan New realization:
Yoneda lemma

“same component”

Environment _ /scan
LIDAR
Environment Depth /pointcloud’  |hterface | /SCan
camera adaptor

. Iﬁﬁt%ligent
obotics
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Failure in sensor

/rgbd_camera/points J

Interface

! Component
has :*”"”'”'""”'”"”""”

Camera

|

' contributes

to goal

R

Goal

Capability

Nav2

Component

______________________________ N\ interface
Camera < : f

. interface f —‘\
' |
T T R N R
1 .
1 realizes
I i-- o Tttt t
! g Component :
: f ______________________________________ ,.
] L !
1 ] Interface | :
' adaptor i
T i
. :
1
' realizes
1
1 ! Interface !
i e mm o em e me e ee e neah -
1 : :
1 b - : :
'e - --9 out interface -~ F-- Lidar interfaceL : :
has : ;o ! J has b

terface

/scan }
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Lidar

Ki

L Waypoint list
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to goal

interface | i

ROBO
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‘e L ROBO
Failure in sensor MINERS

Affected value: [Component]_> o
= | ess pointaccuracy l [

mazx_perf

= | esstime efﬁCiency Capability —— Value

= |ess energy consumption \Kj
min._cos Ezxpected_value
= Task completed ¥

. Iﬁﬁt%ligent
obotics
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Failure in sensor

Initialization OK
Component lidar_status updated to value UNAVAILABLE
Component app_loc.camera AVAILABLE

REQUIRES app_loc.pointcloud _to_laserscan t ivalent
Value value_robot_integrity DECREASED after adaption because

change in MOE mission_safety
Main stakeholder affected: robotic_worker

Value value_efficiency DECREASED after adaption because
change in MOE mission_duration
Main stakeholder affected: mine_worker

Value value_efficiency INCREASED after adaption because
change in MOE mission_energy_conssumption
Main stakeholder affected: mine_worker

New Configuration requested: [app_loc.camera,
app_loc.pointcloud_to_laserscan] of type ROS 2 NODE

--------------------- Reconfiguration successful--------------

ROBO

MINERS
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Decreased capability

ROBO

MINERS

| MOP | i Capabil
has F measures + _______________ paiiy ___________
metric: | reached 5 :
value : Mineral | | capab. — ]
. |extraction rate) : ! ) o
Support

- rocesnine
. |processing time)
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Decreased capability Mﬁ\?El?.‘,%

base
link
u—é—/
Component Interface E Interface
has is
j ini interface; ¢ ini | itypelf: e
realizes [ RM mining | [ RM mining | ypeyi, _ IR .
| module | | interface J S : + has
'interface
Capability Component :
‘ Extract % Interface ____:
oy adaptor :
; i
</ :composable /\ E
1 '
S~ ' ©%P /" Component | Interface Interface !
X has P N is Ehas
e Y reali es( RM main | ijterface ‘ RM main ‘ type g out i"”Einterface
Support =« ‘ nodule ‘ > module ‘ E . interface .
"""""""""""""""" interface '
A 4 +
{ coupling
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Decreased capability MINERS

ROBO

Initialization OK

New WARN status received, checking metrics

Capability app_attach.capability_extract underachieved,
searching for alternatives

No alternative object found in Capability category
Searching for alternatives in other categories
Component app_attach.rm_main_module AVAILABLE
REQUIRES app_attach.interface_adaptor to be equivalent
Creating new morphism from relation in other category|
--------------------- Reasoner executed---------------------

. Iﬁﬁt%ligent
obotics
Lab 101



Decreased capability M?SE%%

--------------------- Reasoner executed-----------------.-.-.-
(Vélue value_extraction INCREASED after adaption because )

change in MOE mission_mineral _productivity
Main stakeholder affected: mine_exploiter

Value value_extraction INCREASED after adaption because
change in MOE mission_mineral_productivity
\ﬂgin stakeholder affected: surface_operator Y,

[ Value value_efficiency DECREASED after adaption because A
change in MOE mission_duration

Main stakeholder affected: mine_operator
A\ y

New Configuration requested: [app_attach.rm_main_module,
app_attach.interface_adaptor] of type ROS 2 NODE
--------------------- Reconfiguration successful------------------
Executing attach action

Action succeeded!

. Iﬁﬁt%ligent
obotics
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Mission unreachable ROBO

MINERS

- Component | Goal 5 hasl ~ Goal Status
T contributes T gos e
— 5 ! : status | .
RM mining 1 . to goal | Mineral : — Extracting ( FRROR )
: > ! | -+ — =
module J | | extracted || status ; L J
_______________________________________ | | L ~
M t ' |
OEE © \ | Goal Pose i [ IN )
other ; —> —
, ' status PROGRESS
deposit L ) < J
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Limitations S SYSSELF

=" Limited representation
= Represent system evolution and risks
* Diagnosis

" [ntegration with other cognitive modules

Extend evaluation:

= Type of systems, metrics, engineering effort

Steep learning curve

= Model-2-model transformations

. IF?t%lligent
obotics
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CORESENSE

A hybrid cognitive
architecture

For deep understanding and awareness

The CoreSense project has received funding from the European Union’s Horizon

Europe research and innovation programme under grant agreement No. 10107054 coresense.eu

IRISH

/ Fraunhofer Universidad O Q MANUFACTURING
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CoreSense: Problem

= Current limitations in intelligent robots: CORS NSE
= Shallow understanding - rigid, predefined behaviours
=" Frequent failure in open or unexpected environments
= CoreSense aims to provide:
= Deeper, dynamic, multi-actionable representations
= Distributed cognitive capabilities

" |ncreased adaptability, safety, and reliability

. IF?t%lligent
obotics
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CoreSense: Approach

= Hybrid: Symbolic engineered models combined with CORSE NSE
data, geometrical, mathematical, etc.

= Exploit at runtime engineering model

= Value-oriented: prioritizes delivering the expected
value to the end user

= Model-centric: used during the whole life-cycle

. IF?t%lligent
obotics
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CoreSense: Aggregate of
cognitive modules

To structures (virtual) C 0 R E S E N S E

P e i T e i e T T T T T - N Y

" Module = 7
Meta
4 3 d
Core
Afferent > [ Engine ] » Efferent
J . J \
Coupling

_____________________________________________________________

To Runtime

. Iﬁﬁt%ligent
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CoreSense: Cognitive process

Distributed execution of cognitive functions

CORESENSE

. E\t%lligent
obotics
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CoreSense: Fundamental essential

MetaPerception Pipeline

«action» waction» «action» «action» waction» «action»
sense extract model integrate project evaluate
data feature meaning model projection
Perception Pipeline
N «action» waction» «action» waction» «action» «action»
sense extract model integrate project evaluate
data feature meaning model projection
A
z
= «model» «model»
é system world models system self models
«actions «action» «action» «actions «action» «actions
trigger policy selection action enaction activation monitoring termination
trigger policy action order end
Action Pipeline
—
«action» «action» «action» «action» «action» «action»
trigger policy selection action enaction activation monitoring termination
trigger policy action order end
A MetaAction Pipeline

CORESENSE
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CoreSense: Reusability and
applicability

= Reference architecture for cognitive robotic systems cO RSE NSE
= Wide applicability: manufacturing mobile manipulators,
iInspection drones, social robots
= ROS 2 compatible
= Supports both greenfield and brownfield system
integration

= Architectural framework: methods, patterns, and tools

. IF?t%lligent
obotics
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@ Challenges and limitations of current
Cognitive Architectures

= Most effort is invested in high-level abilities:
= Action selection, memory, reasoning, metareasoning
= |ncomplete support for full general cognitive capabilities
= Perception often downplayed:
= |Lack of deep conceptualization
= Weak symbol grounding
= Unrealistic attention mechanisms - Limited understanding
=" |nrobotics, focusis on navigation and manipulation

.'F;‘;egggsg; = Still lacks integration with perceptual understanding .
Lab



@ Challenges and limitations of current
Cognitive Architectures

= |Lack of experimental validation
* Few standardized benchmarks or metrics
= Memory handling issues
= Memory often treated as discrete snapshots with timestamps, limiting
temporal reasoning and life-long learning
= Scalability problems

= Symbolic knowledge bases struggle with real-time demands

. IF?t%lligent
obotics
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Al trends and Cognitive Architectures

DL capable of solving Al?

Google DeepMind, Facebook Al research, etc. are working in:
= Solving important issues in Al: natural language, perceptual
processing, cognitive abilities in limited domains

= No unified model of intelligence

= Approach: Al too complex to be built at once, focus on specific tasks

Intelligent
Robotics
Lab
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@ Future Work

= Advanced memory models: Incorporate continuous, context-aware, and
hierarchical memory representations

= Improved usability and integration tools: Create developer-friendly toolkits
and middleware for seamless deployment

= Adaptive and Self-Aware Systems: Enhance metacognition and
introspection for robust autonomous behaviour under uncertainty

= Develop hybrid representations and reasoners at different level of
abstraction

.g‘;%ngg; = System-wide capabilities -
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Take home ideas

= Cognitive architectures are reusable blueprints enabling robots to perceive,
reason, learn, and act using knowledge.

= (Classical systems (SOAR, ACT-R, LIDA) laid the groundwork but have limitations
in real-world robotics

= Robotics frameworks (CRAM, SkiROS, etc.) are deployed in real robot and excel at
specific tasks but face some limitations in scalability, adaptability, and usability
challenges

= SysSelf approach advances robot self-awareness and metacognition but is not a
full architecture, just a system-level module

= The CoreSense project pushes forward with hybrid architectures to overcome

B i , e
Lab these issues
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Conclusions

Achieving deep, adaptive understanding in complex environments
demands overcoming current limits in perception, knowledge
integration, and memory management.

Hybrid cognitive architectures offer a promising path toward
building reliable and robust autonomous robots.

Intelligent
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