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Plan for this lecture

▣Self-adaptive systems (SAS): Why & What
□ Preliminaries & Definitions

▣Self-adaptation in robotics: Two example systems
□ A biased sample

▣Architecture-based self-adaptation
□ A mapping of existing approaches

▣An approach for architecture-based self-adaption
□ Task and architecture co-adaptation
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Self-adaptive systems (SAS): Why & What

Preliminaries



Example #1: Web application
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Web client

Web client

Web client

Load 

balancer

Web server

Web server

Web server

…
Web server

…

Requests can include optional content (e.g. advertisements)

Number of web servers can be increased or decreased (elastic)

Infrastructure cost

Revenue by serving ads

Latency within bounds

Number and type of 

requests may fluctuate at 
runtime (Slashdot-effect)

The actual number and 

type of requests are 
uncertainties only known 
during operation



Example #2: Cleaning robots
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What if a robot cannot locate itself anymore?
What if the floor becomes too wet and slippery?
What if more robots join the group?
What if a robot is out of power?
What if some kids start playing with the robot?



Why do we need self-adaptation?

Modern systems (incl. robotics!) 
are subject to uncertainties in

□ Their environment (e.g. resources)
□ Their users (e.g. number of requests)  
□ Their internal functioning (e.g. 

software faults)
□ Their goals (e.g. different 

prioritization of tasks)

6
Business continuity is essential 

Uncertainties 
need to be 
handled 
during 
operation



Business continuity in space?

7From “Challenges and Opportunities in Robotic Space Exploration”, John Day, NASA
UKRI TAS Resilience Node Talk 7, April 2021, https://www.youtube.com/watch?v=yavzrbIqOkI

https://www.youtube.com/watch?v=yavzrbIqOkI


Self-adaptation can bridge the gap

McKinsey & Company, “When code is king: Mastering automotive software excellence”, February 17, 2021 8



The main idea behind self-adaptation

The system itself (instead of its operators) 
collects data about its state, environment, and 
goals at runtime, resolves any uncertainties, and 
adapts to satisfy its goals  

9



Two principles on self-adaptation

External principle:
□ A self-adaptive system is a system that can handle 

uncertainty in its environment, itself and its goals 
autonomously (or with  minimal human interference)

Internal principle
□ A self-adaptive system comprises two distinct parts: 

the first part  interacts with the environment and has 
domain concerns; the  second part interacts with the 
first part and has adaptation concerns, i.e., (usually 
conflicting) concerns about the domain concerns.
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Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”



Conceptual model of SAS
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Software system

Environment
Non-controllable software, hardware, 

network, physical context

input effect

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”



Conceptual model of SAS
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Self-adaptive software system

Environment
Non-controllable software, hardware, 

network, physical context

input effect

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

including uncertainties



Conceptual model of SAS
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Software system

Environment
Non-controllable software, hardware, 

network, physical context

input effect

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Instrumentation to monitor & adapt

Probes

Managing system

Self-adaptive software system

adaptmonitor

monitor



Conceptual model of SAS
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Environment
Non-controllable software, hardware, 

network, physical context

input effect

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Managed System

Managing system

Self-adaptive software system

adaptmonitor

monitor



Autonomic manager – MAPE-K reference model

15

Element to be monitored 

and controlled to realize 

administrator’s goals

Relieves administrators of 

responsibility to directly manage 

the managed element

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”



Autonomic manager – MAPE-K reference model

16

Determines whether 

adaptation actions are 
required based on the 
collected data and 

administrator’s goals

Collects data from managed 

element and its execution 
context to update the 
Knowledge. 

Abstraction of relevant aspects of the managed element (self-awareness), 

environment (context-awareness), and the administrator’s goals (goal-awareness)

Executes the adaptation 

actions of the generated 
plan, adapting the managed 
element 

Plans mitigation actions to 

adapt the managed 
element when needed 

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”



Self-* properties

17



The seven waves

▣Research in self-adaptation has been 
categorized in seven waves by Danny Weyns

▣Focus on how self-adaptive systems are 
engineered

▣Highlight research trends and their influences
▣Contribute complementary layers of 

knowledge
18



1. Automating tasks

7. Learn from experience

2. Architectural principles

3. Runtime models 6. Control principles

5. Guarantees under 

uncertainties

4. Requirements-

driven adaptation

Slide credit:Danny Weyns, “An Introduction to Self-adaptive Systems: A Contemporary Software Engineering Perspective”, Wiley 2020

systematic engineering 

perspective

requirements of self-

adaptive systems

requirements for 

feedback loops complexity of 

concrete design

theoretical 

framework for 
adaptation

uncertainty as 

first-class citizen

guarantees under 

uncertainty complexity to provide 

assurances

growing scale and increasingly 

complex levels of uncertainty
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Self-adaptation in robotics: Two example systems

A biased sample



UNDERSEA
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▣Unmanned Underwater 
Vehicle (UUV) on an 
environmental surveillance 
mission
□ Contains sensors (water 

current, salinity, temperature)
□ Each sensor with rate and 

reliability

S. Gerasimou, et al "UNDERSEA: An Exemplar for Engineering Self-Adaptive Unmanned Underwater Vehicles," IEEE/ACM 

12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2017



UNDERSEA: possible runtime changes
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▣ Increasing/decreasi
ng speed of the 
UUV

▣Turning sensors 
on/off (assuming 
they measure the 
same thing, e.g., 
temperature)

Given constraints on number of 
“good” measurements & energy per 

X meters, minimize energy, 
maximize speed



UNDERSEA: let’s pick a configuration

23
Constraint 

violations

Weighted average of 

speed and energy



UNDERSEA: what can go wrong?
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▣Sensor degradation 
leading to lower 
sensing rates

▣Sensor failure 
(sensor cannot be 
used anymore)

▣Change of 
constraint or 
optimization goal

Now, the configuration 
“optimization problem” needs to be 

solved at runtime!



UNDERSEA: runtime reasoning 
(PRISM, CTMP)
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module sensor1

// system states
stateS1 : [0..6] init 0; // 0:start - 1:on - 2:read - 3:succ - 4: fail - 5:done - 6:off

[switchS1] (stateS1=0) & (sensor1Enabled)  -> 1000.0 : (stateS1'=1);
[switchS1] (stateS1=0) & (!sensor1Enabled) -> 1000.0 : (stateS1'=6);

[readS1] (stateS1=1) -> r1 : (stateS1'=2);
[succReadS1] (stateS1=2) -> p1 : (stateS1'=3);
[] (stateS1=2) -> (100.0 -p1): (stateS1'=4);

[] (stateS1=3) -> 1000.0 : (stateS1'=5);
[] (stateS1=4) -> 1000.0 : (stateS1'=5);

[] (stateS1=5) -> 1000.0 : (stateS1'=1);
[] (stateS1=6) -> 1000.0 : (stateS1'=6);

endmodule

Model parameters (their values 

measurable at runtime) 



UNDERSEA: runtime reasoning 
(PRISM, CTMP)
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module sensor1

// system states
stateS1 : [0..6] init 0; // 0:start - 1:on - 2:read - 3:succ - 4: fail - 5:done - 6:off

[switchS1] (stateS1=0) & (sensor1Enabled)  -> 1000.0 : (stateS1'=1);
[switchS1] (stateS1=0) & (!sensor1Enabled) -> 1000.0 : (stateS1'=6);

[readS1] (stateS1=1) -> r1 : (stateS1'=2);
[succReadS1] (stateS1=2) -> p1 : (stateS1'=3);
[] (stateS1=2) -> (100.0 -p1): (stateS1'=4);

[] (stateS1=3) -> 1000.0 : (stateS1'=5);
[] (stateS1=4) -> 1000.0 : (stateS1'=5);

[] (stateS1=5) -> 1000.0 : (stateS1'=1);
[] (stateS1=6) -> 1000.0 : (stateS1'=6);

endmodule

Model parameters (their values 

measurable at runtime) 

rewards "energy"

[readS1] true : 3;
[readS2] true : 2.4;
[readS3] true : 2.1;

[switchS1] true : sensor1SwitchCost;
[switchS2] true : sensor2SwitchCost;

[switchS3] true : sensor3SwitchCost;
endrewards



UNDERSEA: runtime reasoning 
(PRISM, CTMP)
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module sensor1

// system states
stateS1 : [0..6] init 0; // 0:start - 1:on - 2:read - 3:succ - 4: fail - 5:done - 6:off

[switchS1] (stateS1=0) & (sensor1Enabled)  -> 1000.0 : (stateS1'=1);
[switchS1] (stateS1=0) & (!sensor1Enabled) -> 1000.0 : (stateS1'=6);

[readS1] (stateS1=1) -> r1 : (stateS1'=2);
[succReadS1] (stateS1=2) -> p1 : (stateS1'=3);
[] (stateS1=2) -> (100.0 -p1): (stateS1'=4);

[] (stateS1=3) -> 1000.0 : (stateS1'=5);
[] (stateS1=4) -> 1000.0 : (stateS1'=5);

[] (stateS1=5) -> 1000.0 : (stateS1'=1);
[] (stateS1=6) -> 1000.0 : (stateS1'=6);

endmodule

Model parameters (their values 

measurable at runtime) 

rewards "energy"

[readS1] true : 3;
[readS2] true : 2.4;
[readS3] true : 2.1;

[switchS1] true : sensor1SwitchCost;
[switchS2] true : sensor2SwitchCost;

[switchS3] true : sensor3SwitchCost;
endrewards

R{"measurement"}=? [ C<=10/s ]

R{"energy"}=? [ C<=10/s ]



SUAVE

▣Self-Adaptive Underwater Autonomous 
Vehicles Exemplar

▣Scenario: pipeline inspection for a single robot

28

Search 
Pipeline

Inspect 
Pipeline

G. R. Silva et al., "SUAVE: An Exemplar for Self-Adaptive Underwater Vehicles," IEEE/ACM 18th 

Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2023



1. Water visibility may change during the mission
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SUAVE: uncertainties + feedback loops

High water visibility and high 

altitude

Low water visibility and high 

altitude

Low water visibility and low 

altitude



1. Water visibility may change during the mission
a. Can this influence the mission? 

■ Yes, the effectiveness of searching may be 
decreased if the visibility is low

b. What would we like the robot to do if it would be able 
to resolve this uncertainty at runtime?

■ Go higher when the visibility is high (so that its field 
of view is larger)

c. Can the robot monitor the visibility at runtime? 
■ Yes, with a turbidimeter/nephelometer

30

SUAVE: uncertainties + feedback loops



1. Water visibility may change during the mission
d. Can the robot change its search strategy at runtime? 

■ Yes, by selecting a different depth to search 
(implemented by changing the configuration of 
the search function or selecting between search 
functions for different depths)

e. Does it pay off to implement the above feedback 
loop? 

■ Our results indicate that the time to find the 
pipeline with the loop present gets almost half→
less time equals less fuel, more inspection time 31

SUAVE: uncertainties + feedback loops



2. One of its six thrusters may fail/malfunction

32

SUAVE: uncertainties + feedback loops

Thruster failure cause the 

AUV to deviate from its path



2. One of its six thrusters may fail/malfunction
a. Can this influence the mission? 

■ Yes, the robot may not be able to follow its autopilot 
anymore and stray forever and ever

b. What would we like the robot to do if it would be able 
to resolve this uncertainty at runtime?

■ Fix or replace the failing thruster, or use a back-up 
one, or just use the remaining thrusters

c. Can the robot monitor the thruster failure at runtime? 
■ Yes, through Finite Impulse Response (FIR) and 

Principal Component Analysis (PCA) 33

SUAVE: uncertainties + feedback loops



2. One of its six thrusters may fail/malfunction
d. Can the robot deal with failed/malfunctioning 

thrusters at runtime? 
d. Yes, by restarting them (assumption!)

e. Does it pay off to implement the above feedback 
loop? 

■ Our results indicate that the length of the pipeline 
inspected is increased by 50%  with the loop →
more efficient missions

34

SUAVE: uncertainties + feedback loops



SUAVE: technical 
architecture

▣Essentially, water 
visibility and 
thruster states are 
monitored and 
ROS2 components 
are reconfigured 

▣MROS, System 
modes

35



SUAVE is available on Github

36

Give it a try!
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Exercise

I. Identify some uncertainties in the robotic 
systems you are working with 

II. For each uncertainty, answer the following:
a. Can it influence the mission? 
b. What would we like the system to do if it would be able 

to resolve this uncertainty at runtime?
c. Can the robot monitor at runtime quantities that can 

resolve the uncertainty? 
d. Can the robot change its behavior at runtime to 

recover or optimize itself?
e. Does it pay off to implement the above feedback loop? 
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Architecture-based self-adaptation

A mapping of existing approaches



What is software architecture?

▣Fundamental structure of a software system
▣ Important is the process to arrive to the 

structures: architectural decisions

▣Related terms:
□ Design patterns (e.g. Gang of Four* patterns)
□ Architectural styles (e.g. MVC)
□ Component models (e.g. OSGI)

39

* See book: “Design Patterns: Elements of Reusable Object-Oriented Software”



Why architecture-based 
self-adaptation?

▣Separation of concerns
▣ Integrated approach
▣Leveraging consolidated efforts
▣Abstraction to manage system change
▣Dealing with system-wide concerns
▣Facilitating scalability

40



3-Layer model

41

“Components automatically configure their interaction in a 
way that is compatible with an overall architectural 
specification and achieves the goals of the system.” 

“… the architectural level seems to provide the required 
level of abstraction and generality to deal with the 
challenges posed by self-adaption.” 

J. Kramer and J. Magee, Self-adaptation: an architectural challenge, Future of Software Engineering, 2007

E. Gat, Three-layer Architectures, Artificial Intelligence and Mobile Robots, MIT/AAAI Press, 1997

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”



3-Layer model

42

underlying component architecture in response to new 

states reported by that layer or in response to new 

objectives required of the system introduced from the 

layer above. This layer can introduce new components; 

recreate failed components; change component 

interconnections and change component operating 

parameters. It consists of a set of plans which are 

activated in response to changes of the operating state 

of the underlying system. For example, when a 

component fails, change management can effect a 

repair either by changing component connections or by 

creating new components. In robotic systems, this 

layer has been implemented in a number of ways from 

conditional sequencing systems [10] to sets of state 

machines. Work in the network management area has 

produced languages such as Ponder [15] which 

perform a similar function to the planning languages in 

the context of systems. Ponder is essentially a language 

which execute actions in response to recognising 

(possible complex) events. The essential characteristic 

of this change management layer is that it consists of a 

set of pre-specified plans which are activated in 

response to state change from the system below. The 

layer can respond quickly to new situations by 

executing what are in essence pre-computed plans. If a 

situation is reported for which a plan does not exist 

then this layer must invoke the services of the higher 

planning layer. In addition, new goals for a system will 

involve new plans being introduced into this layer.  

2.3 Goal Management 

The uppermost layer of Gat’s three layer architecture is 

the deliberation layer. This layer consists of time 

consuming computations such as planning which takes 

the current state and a specification of a high-level 

goal and attempts to produce a plan to achieve that 

goal. An example in robotics would be given the 

current position of a robot and a map of its 

environment produce a route plan for execution by the 

sequencing layer. Changes in the environment, such as 

obstacles that are not in the map, will involve re-

planning. The role of the equivalent layer in a self-

managed system is Goal Management. This layer 

produces change management plans in response to 

requests from the layer below and in response to the 

introduction of new goals. For example, if the goal in 

to maintain some architectural property such as triple 

redundancy for all servers, this layer could be 

responsible for finding the resources on which to 

create new components after failure and producing a 

plan as how to create and integrate these new 

components to the change management layer. It could 

be responsible for deciding the optimal placement of 

servers for load balancing purposes. As we will 

address further in the next section there are many 

research issues here as to how to represent high level 

system goals, how to synthesize change management 

plans from these goals and how general or domain 

specific this layer should be. 

Figure 1 summarises our proposed three layer model 

for a self managed system following Gat’s work on 

architectures for robotic systems. The principal criteria 

for placing function in different layers in Gat’s 

architecture is one of time scale and this would seem to 

apply equally well to self managed systems. Immediate 

feedback actions are at the lowest level and the longest 

actions requiring deliberation are at the uppermost 

level. We would emphasize that we do not consider 

this an implementation architecture but rather a 

conceptual or reference architecture which identifies 

the necessary functionality for self management. We 

will use it in the next section to organise and focus 

discussion of the research challenges present by self 

management. 
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Figure 1 – Three Layer Architecture Model for 

 Self-Management. 

 

3 Research Issues 

In the previous section we outlined a three layer 

architecture model which is intended as a form of 

reference model rather than as a guide to how self 

managed software should be implemented. In this 

section, we use the model to structure the presentation 

of the research issues we see presented by the 

challenge of implementing self-managed systems. To 

ground this discussion, we draw examples from the 

work with which we are most familiar – namely our 

own. 

3.1 Component Control Layer 

We are concerned with management at the 

architectural level where we consider a system to 

Responsible for re-planning and 

introducing new goals 

Responsible for executing 

changes in the lower layer 

based on status changes

Accomplishes the application 

functionality of the system

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”



3-Layer model
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underlying component architecture in response to new 

states reported by that layer or in response to new 

objectives required of the system introduced from the 

layer above. This layer can introduce new components; 

recreate failed components; change component 

interconnections and change component operating 

parameters. It consists of a set of plans which are 

activated in response to changes of the operating state 

of the underlying system. For example, when a 

component fails, change management can effect a 

repair either by changing component connections or by 

creating new components. In robotic systems, this 

layer has been implemented in a number of ways from 

conditional sequencing systems [10] to sets of state 

machines. Work in the network management area has 

produced languages such as Ponder [15] which 

perform a similar function to the planning languages in 

the context of systems. Ponder is essentially a language 

which execute actions in response to recognising 

(possible complex) events. The essential characteristic 

of this change management layer is that it consists of a 

set of pre-specified plans which are activated in 

response to state change from the system below. The 

layer can respond quickly to new situations by 

executing what are in essence pre-computed plans. If a 

situation is reported for which a plan does not exist 

then this layer must invoke the services of the higher 

planning layer. In addition, new goals for a system will 

involve new plans being introduced into this layer.  

2.3 Goal Management 

The uppermost layer of Gat’s three layer architecture is 

the deliberation layer. This layer consists of time 

consuming computations such as planning which takes 

the current state and a specification of a high-level 

goal and attempts to produce a plan to achieve that 

goal. An example in robotics would be given the 

current position of a robot and a map of its 

environment produce a route plan for execution by the 

sequencing layer. Changes in the environment, such as 

obstacles that are not in the map, will involve re-

planning. The role of the equivalent layer in a self-

managed system is Goal Management. This layer 

produces change management plans in response to 

requests from the layer below and in response to the 

introduction of new goals. For example, if the goal in 

to maintain some architectural property such as triple 

redundancy for all servers, this layer could be 

responsible for finding the resources on which to 

create new components after failure and producing a 

plan as how to create and integrate these new 

components to the change management layer. It could 

be responsible for deciding the optimal placement of 

servers for load balancing purposes. As we will 

address further in the next section there are many 

research issues here as to how to represent high level 

system goals, how to synthesize change management 

plans from these goals and how general or domain 

specific this layer should be. 

Figure 1 summarises our proposed three layer model 

for a self managed system following Gat’s work on 

architectures for robotic systems. The principal criteria 

for placing function in different layers in Gat’s 

architecture is one of time scale and this would seem to 

apply equally well to self managed systems. Immediate 

feedback actions are at the lowest level and the longest 

actions requiring deliberation are at the uppermost 

level. We would emphasize that we do not consider 

this an implementation architecture but rather a 

conceptual or reference architecture which identifies 

the necessary functionality for self management. We 

will use it in the next section to organise and focus 

discussion of the research challenges present by self 

management. 

 

Goal 

Management

Change 

Management

Component 

Control

Status

Change Actions

C1 C2

P1 P2

Change Plans

Plan Request

G

G’ G”

Goal 

Management

Change 

Management

Component 

Control

Status

Change Actions

C1 C2

P1 P2

Change Plans

Plan Request

G

G’ G”
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 Self-Management. 

 

3 Research Issues 

In the previous section we outlined a three layer 

architecture model which is intended as a form of 

reference model rather than as a guide to how self 

managed software should be implemented. In this 

section, we use the model to structure the presentation 

of the research issues we see presented by the 

challenge of implementing self-managed systems. To 

ground this discussion, we draw examples from the 

work with which we are most familiar – namely our 

own. 

3.1 Component Control Layer 

We are concerned with management at the 

architectural level where we consider a system to 

• Handles requests from the layer 

below and introduction new goals

• Takes state and high-level goal to 

produce plan to achieve goal 

Reacts to changes in state of the 

lower level by execution actions to 

handle the new situation 

• Set of interconnected components

• Facilities to report current status of 

components and perform adaptations

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”



Mapping existing approaches

▣RQ1 – What are the key characteristics of 
approaches for architecture-based self-
adaptation in robotics software?

▣RQ2 – What are the evaluation strategies of 
approaches for architecture-based self-
adaptation in robotics software?

44

Alberts, Elvin and Gerostathopoulos, Ilias and Malavolta, Ivano and Hernández Corbato, Carlos and Lago, 

Patricia, Software Architecture-Based Self-Adaptation in Robotics. Available at SSRN: 

https://ssrn.com/abstract=4805883 or http://dx.doi.org/10.2139/ssrn.4805883 

https://ssrn.com/abstract=4805883
https://dx.doi.org/10.2139/ssrn.4805883


Study Design 
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Synthesized results from 

28 papers between 
2011-2022



Adaptation Goals

46



What is being sensed
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Mechanisms for decision making
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What is being changed

49
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An approach for architecture-based self-adaption

Task and architecture co-adaptation
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D

2

1

3
Runtime decision: which route to select?

Javier Cámara, Bradley Schmerl, and David Garlan. 2020. Software architecture 

and task plan co-adaptation for mobile service robots. In SEAMS 2020
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Runtime decision: which components to use?



Concerns to consider

▣Timeliness – get to the destination as fast as 
possible 

▣Safety – avoid obstacles
▣Energy efficiency – minimize used energy

53



Approach: Model everything!

▣The architecture of the robot 
□ ROS2 graph and ROS2 arch. style modeled in Alloy

▣The behavior of the robot 
□ PRISM model (next slides) 

▣The resource usage 
□ Energy consumption when executing a task with a 

certain configuration

▣The map of the environment
□ Specific to the navigation task

54



Approach: Model everything!

▣The architecture of the robot 
□ ROS2 graph 

▣The behavior of the robot 
□ PRISM model (next slide) 

▣The resource usage 
□ Energy consumption when 

executing a task with a certain 
configuration

▣The map of the environment
55



Prism model example

56

s0

s2

s3

s1

{init}

{path 1}

{obstacle}

…

0.9

0.1

1

1

{no obstacle}

s4

module M1

x : [0..2] init 0;
[] x=0 -> (x’=1);
[] x=1 -> 0.9:(x'=2) + 0.1:(x’=3);

[] x=2 -> (x'=2);
[] x=3 -> (x'=2);

[] x=0 -> (x’=4);
endmodule
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Conclusions



Key Takeaways

▣Self-adaptation can be a powerful technique 
for inducing robustness

▣Can also be used for keeping requirements 
met at runtime despite uncertainty 

▣Co-adaptation of architecture and task can 
(quickly) become a complex problem 

▣We need (more/better) methods to handle 
uncertainties at runtime
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