
Self-Adaptation in Robotics

Ilias Gerostathopoulos
Assistant Professor

Software and Sustainability Group
Computer Science Department

Vrije Universiteit Amsterdam
i.g.gerostathopoulos@vu.nl

2nd ACM SIGSOFT Summer School for Software
Engineering in Robotics, July 2th 2025

Plan for this lecture

▣Self-adaptive systems (SAS): Why & What
□ Preliminaries & Definitions

▣Self-adaptation in robotics: Two example systems
□ A biased sample

▣Architecture-based self-adaptation
□ A mapping of existing approaches

▣An approach for architecture-based self-adaption
□ Task and architecture co-adaptation

2

3

Self-adaptive systems (SAS): Why & What

Preliminaries

Example #1: Web application

4

Web client

Web client

Web client

Load

balancer

Web server

Web server

Web server

…
Web server

…

Requests can include optional content (e.g. advertisements)

Number of web servers can be increased or decreased (elastic)

Infrastructure cost

Revenue by serving ads

Latency within bounds

Number and type of

requests may fluctuate at
runtime (Slashdot-effect)

The actual number and

type of requests are
uncertainties only known
during operation

Example #2: Cleaning robots

5

What if a robot cannot locate itself anymore?
What if the floor becomes too wet and slippery?
What if more robots join the group?
What if a robot is out of power?
What if some kids start playing with the robot?

Why do we need self-adaptation?

Modern systems (incl. robotics!)
are subject to uncertainties in

□ Their environment (e.g. resources)
□ Their users (e.g. number of requests)
□ Their internal functioning (e.g.

software faults)
□ Their goals (e.g. different

prioritization of tasks)

6
Business continuity is essential

Uncertainties
need to be
handled
during
operation

Business continuity in space?

7From “Challenges and Opportunities in Robotic Space Exploration”, John Day, NASA
UKRI TAS Resilience Node Talk 7, April 2021, https://www.youtube.com/watch?v=yavzrbIqOkI

https://www.youtube.com/watch?v=yavzrbIqOkI

Self-adaptation can bridge the gap

McKinsey & Company, “When code is king: Mastering automotive software excellence”, February 17, 2021 8

The main idea behind self-adaptation

The system itself (instead of its operators)
collects data about its state, environment, and
goals at runtime, resolves any uncertainties, and
adapts to satisfy its goals

9

Two principles on self-adaptation

External principle:
□ A self-adaptive system is a system that can handle

uncertainty in its environment, itself and its goals
autonomously (or with minimal human interference)

Internal principle
□ A self-adaptive system comprises two distinct parts:

the first part interacts with the environment and has
domain concerns; the second part interacts with the
first part and has adaptation concerns, i.e., (usually
conflicting) concerns about the domain concerns.

10

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Conceptual model of SAS

11

Software system

Environment
Non-controllable software, hardware,

network, physical context

input effect

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Conceptual model of SAS

12

Self-adaptive software system

Environment
Non-controllable software, hardware,

network, physical context

input effect

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

including uncertainties

Conceptual model of SAS

13

Software system

Environment
Non-controllable software, hardware,

network, physical context

input effect

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Instrumentation to monitor & adapt

Probes

Managing system

Self-adaptive software system

adaptmonitor

monitor

Conceptual model of SAS

14

Environment
Non-controllable software, hardware,

network, physical context

input effect

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Managed System

Managing system

Self-adaptive software system

adaptmonitor

monitor

Autonomic manager – MAPE-K reference model

15

Element to be monitored

and controlled to realize

administrator’s goals

Relieves administrators of

responsibility to directly manage

the managed element

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Autonomic manager – MAPE-K reference model

16

Determines whether

adaptation actions are
required based on the
collected data and

administrator’s goals

Collects data from managed

element and its execution
context to update the
Knowledge.

Abstraction of relevant aspects of the managed element (self-awareness),

environment (context-awareness), and the administrator’s goals (goal-awareness)

Executes the adaptation

actions of the generated
plan, adapting the managed
element

Plans mitigation actions to

adapt the managed
element when needed

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Self-* properties

17

The seven waves

▣Research in self-adaptation has been
categorized in seven waves by Danny Weyns

▣Focus on how self-adaptive systems are
engineered

▣Highlight research trends and their influences
▣Contribute complementary layers of

knowledge
18

1. Automating tasks

7. Learn from experience

2. Architectural principles

3. Runtime models 6. Control principles

5. Guarantees under

uncertainties

4. Requirements-

driven adaptation

Slide credit:Danny Weyns, “An Introduction to Self-adaptive Systems: A Contemporary Software Engineering Perspective”, Wiley 2020

systematic engineering

perspective

requirements of self-

adaptive systems

requirements for

feedback loops complexity of

concrete design

theoretical

framework for
adaptation

uncertainty as

first-class citizen

guarantees under

uncertainty complexity to provide

assurances

growing scale and increasingly

complex levels of uncertainty

20

Self-adaptation in robotics: Two example systems

A biased sample

UNDERSEA

21

▣Unmanned Underwater
Vehicle (UUV) on an
environmental surveillance
mission
□ Contains sensors (water

current, salinity, temperature)
□ Each sensor with rate and

reliability

S. Gerasimou, et al "UNDERSEA: An Exemplar for Engineering Self-Adaptive Unmanned Underwater Vehicles," IEEE/ACM

12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2017

UNDERSEA: possible runtime changes

22

▣ Increasing/decreasi
ng speed of the
UUV

▣Turning sensors
on/off (assuming
they measure the
same thing, e.g.,
temperature)

Given constraints on number of
“good” measurements & energy per

X meters, minimize energy,
maximize speed

UNDERSEA: let’s pick a configuration

23
Constraint

violations

Weighted average of

speed and energy

UNDERSEA: what can go wrong?

24

▣Sensor degradation
leading to lower
sensing rates

▣Sensor failure
(sensor cannot be
used anymore)

▣Change of
constraint or
optimization goal

Now, the configuration
“optimization problem” needs to be

solved at runtime!

UNDERSEA: runtime reasoning
(PRISM, CTMP)

25

module sensor1

// system states
stateS1 : [0..6] init 0; // 0:start - 1:on - 2:read - 3:succ - 4: fail - 5:done - 6:off

[switchS1] (stateS1=0) & (sensor1Enabled) -> 1000.0 : (stateS1'=1);
[switchS1] (stateS1=0) & (!sensor1Enabled) -> 1000.0 : (stateS1'=6);

[readS1] (stateS1=1) -> r1 : (stateS1'=2);
[succReadS1] (stateS1=2) -> p1 : (stateS1'=3);
[] (stateS1=2) -> (100.0 -p1): (stateS1'=4);

[] (stateS1=3) -> 1000.0 : (stateS1'=5);
[] (stateS1=4) -> 1000.0 : (stateS1'=5);

[] (stateS1=5) -> 1000.0 : (stateS1'=1);
[] (stateS1=6) -> 1000.0 : (stateS1'=6);

endmodule

Model parameters (their values

measurable at runtime)

UNDERSEA: runtime reasoning
(PRISM, CTMP)

26

module sensor1

// system states
stateS1 : [0..6] init 0; // 0:start - 1:on - 2:read - 3:succ - 4: fail - 5:done - 6:off

[switchS1] (stateS1=0) & (sensor1Enabled) -> 1000.0 : (stateS1'=1);
[switchS1] (stateS1=0) & (!sensor1Enabled) -> 1000.0 : (stateS1'=6);

[readS1] (stateS1=1) -> r1 : (stateS1'=2);
[succReadS1] (stateS1=2) -> p1 : (stateS1'=3);
[] (stateS1=2) -> (100.0 -p1): (stateS1'=4);

[] (stateS1=3) -> 1000.0 : (stateS1'=5);
[] (stateS1=4) -> 1000.0 : (stateS1'=5);

[] (stateS1=5) -> 1000.0 : (stateS1'=1);
[] (stateS1=6) -> 1000.0 : (stateS1'=6);

endmodule

Model parameters (their values

measurable at runtime)

rewards "energy"

[readS1] true : 3;
[readS2] true : 2.4;
[readS3] true : 2.1;

[switchS1] true : sensor1SwitchCost;
[switchS2] true : sensor2SwitchCost;

[switchS3] true : sensor3SwitchCost;
endrewards

UNDERSEA: runtime reasoning
(PRISM, CTMP)

27

module sensor1

// system states
stateS1 : [0..6] init 0; // 0:start - 1:on - 2:read - 3:succ - 4: fail - 5:done - 6:off

[switchS1] (stateS1=0) & (sensor1Enabled) -> 1000.0 : (stateS1'=1);
[switchS1] (stateS1=0) & (!sensor1Enabled) -> 1000.0 : (stateS1'=6);

[readS1] (stateS1=1) -> r1 : (stateS1'=2);
[succReadS1] (stateS1=2) -> p1 : (stateS1'=3);
[] (stateS1=2) -> (100.0 -p1): (stateS1'=4);

[] (stateS1=3) -> 1000.0 : (stateS1'=5);
[] (stateS1=4) -> 1000.0 : (stateS1'=5);

[] (stateS1=5) -> 1000.0 : (stateS1'=1);
[] (stateS1=6) -> 1000.0 : (stateS1'=6);

endmodule

Model parameters (their values

measurable at runtime)

rewards "energy"

[readS1] true : 3;
[readS2] true : 2.4;
[readS3] true : 2.1;

[switchS1] true : sensor1SwitchCost;
[switchS2] true : sensor2SwitchCost;

[switchS3] true : sensor3SwitchCost;
endrewards

R{"measurement"}=? [C<=10/s]

R{"energy"}=? [C<=10/s]

SUAVE

▣Self-Adaptive Underwater Autonomous
Vehicles Exemplar

▣Scenario: pipeline inspection for a single robot

28

Search
Pipeline

Inspect
Pipeline

G. R. Silva et al., "SUAVE: An Exemplar for Self-Adaptive Underwater Vehicles," IEEE/ACM 18th

Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2023

1. Water visibility may change during the mission

29

SUAVE: uncertainties + feedback loops

High water visibility and high

altitude

Low water visibility and high

altitude

Low water visibility and low

altitude

1. Water visibility may change during the mission
a. Can this influence the mission?

■ Yes, the effectiveness of searching may be
decreased if the visibility is low

b. What would we like the robot to do if it would be able
to resolve this uncertainty at runtime?

■ Go higher when the visibility is high (so that its field
of view is larger)

c. Can the robot monitor the visibility at runtime?
■ Yes, with a turbidimeter/nephelometer

30

SUAVE: uncertainties + feedback loops

1. Water visibility may change during the mission
d. Can the robot change its search strategy at runtime?

■ Yes, by selecting a different depth to search
(implemented by changing the configuration of
the search function or selecting between search
functions for different depths)

e. Does it pay off to implement the above feedback
loop?

■ Our results indicate that the time to find the
pipeline with the loop present gets almost half→
less time equals less fuel, more inspection time 31

SUAVE: uncertainties + feedback loops

2. One of its six thrusters may fail/malfunction

32

SUAVE: uncertainties + feedback loops

Thruster failure cause the

AUV to deviate from its path

2. One of its six thrusters may fail/malfunction
a. Can this influence the mission?

■ Yes, the robot may not be able to follow its autopilot
anymore and stray forever and ever

b. What would we like the robot to do if it would be able
to resolve this uncertainty at runtime?

■ Fix or replace the failing thruster, or use a back-up
one, or just use the remaining thrusters

c. Can the robot monitor the thruster failure at runtime?
■ Yes, through Finite Impulse Response (FIR) and

Principal Component Analysis (PCA) 33

SUAVE: uncertainties + feedback loops

2. One of its six thrusters may fail/malfunction
d. Can the robot deal with failed/malfunctioning

thrusters at runtime?
d. Yes, by restarting them (assumption!)

e. Does it pay off to implement the above feedback
loop?

■ Our results indicate that the length of the pipeline
inspected is increased by 50% with the loop →
more efficient missions

34

SUAVE: uncertainties + feedback loops

SUAVE: technical
architecture

▣Essentially, water
visibility and
thruster states are
monitored and
ROS2 components
are reconfigured

▣MROS, System
modes

35

SUAVE is available on Github

36

Give it a try!

37

Exercise

I. Identify some uncertainties in the robotic
systems you are working with

II. For each uncertainty, answer the following:
a. Can it influence the mission?
b. What would we like the system to do if it would be able

to resolve this uncertainty at runtime?
c. Can the robot monitor at runtime quantities that can

resolve the uncertainty?
d. Can the robot change its behavior at runtime to

recover or optimize itself?
e. Does it pay off to implement the above feedback loop?

38

Architecture-based self-adaptation

A mapping of existing approaches

What is software architecture?

▣Fundamental structure of a software system
▣ Important is the process to arrive to the

structures: architectural decisions

▣Related terms:
□ Design patterns (e.g. Gang of Four* patterns)
□ Architectural styles (e.g. MVC)
□ Component models (e.g. OSGI)

39

* See book: “Design Patterns: Elements of Reusable Object-Oriented Software”

Why architecture-based
self-adaptation?

▣Separation of concerns
▣ Integrated approach
▣Leveraging consolidated efforts
▣Abstraction to manage system change
▣Dealing with system-wide concerns
▣Facilitating scalability

40

3-Layer model

41

“Components automatically configure their interaction in a
way that is compatible with an overall architectural
specification and achieves the goals of the system.”

“… the architectural level seems to provide the required
level of abstraction and generality to deal with the
challenges posed by self-adaption.”

J. Kramer and J. Magee, Self-adaptation: an architectural challenge, Future of Software Engineering, 2007

E. Gat, Three-layer Architectures, Artificial Intelligence and Mobile Robots, MIT/AAAI Press, 1997

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

3-Layer model

42

underlying component architecture in response to new

states reported by that layer or in response to new

objectives required of the system introduced from the

layer above. This layer can introduce new components;

recreate failed components; change component

interconnections and change component operating

parameters. It consists of a set of plans which are

activated in response to changes of the operating state

of the underlying system. For example, when a

component fails, change management can effect a

repair either by changing component connections or by

creating new components. In robotic systems, this

layer has been implemented in a number of ways from

conditional sequencing systems [10] to sets of state

machines. Work in the network management area has

produced languages such as Ponder [15] which

perform a similar function to the planning languages in

the context of systems. Ponder is essentially a language

which execute actions in response to recognising

(possible complex) events. The essential characteristic

of this change management layer is that it consists of a

set of pre-specified plans which are activated in

response to state change from the system below. The

layer can respond quickly to new situations by

executing what are in essence pre-computed plans. If a

situation is reported for which a plan does not exist

then this layer must invoke the services of the higher

planning layer. In addition, new goals for a system will

involve new plans being introduced into this layer.

2.3 Goal Management

The uppermost layer of Gat’s three layer architecture is

the deliberation layer. This layer consists of time

consuming computations such as planning which takes

the current state and a specification of a high-level

goal and attempts to produce a plan to achieve that

goal. An example in robotics would be given the

current position of a robot and a map of its

environment produce a route plan for execution by the

sequencing layer. Changes in the environment, such as

obstacles that are not in the map, will involve re-

planning. The role of the equivalent layer in a self-

managed system is Goal Management. This layer

produces change management plans in response to

requests from the layer below and in response to the

introduction of new goals. For example, if the goal in

to maintain some architectural property such as triple

redundancy for all servers, this layer could be

responsible for finding the resources on which to

create new components after failure and producing a

plan as how to create and integrate these new

components to the change management layer. It could

be responsible for deciding the optimal placement of

servers for load balancing purposes. As we will

address further in the next section there are many

research issues here as to how to represent high level

system goals, how to synthesize change management

plans from these goals and how general or domain

specific this layer should be.

Figure 1 summarises our proposed three layer model

for a self managed system following Gat’s work on

architectures for robotic systems. The principal criteria

for placing function in different layers in Gat’s

architecture is one of time scale and this would seem to

apply equally well to self managed systems. Immediate

feedback actions are at the lowest level and the longest

actions requiring deliberation are at the uppermost

level. We would emphasize that we do not consider

this an implementation architecture but rather a

conceptual or reference architecture which identifies

the necessary functionality for self management. We

will use it in the next section to organise and focus

discussion of the research challenges present by self

management.

Goal

Management

Change

Management

Component

Control

Status

Change Actions

C1 C2

P1 P2

Change Plans

Plan Request

G

G’ G”

Goal

Management

Change

Management

Component

Control

Status

Change Actions

C1 C2

P1 P2

Change Plans

Plan Request

G

G’ G”

Figure 1 – Three Layer Architecture Model for

 Self-Management.

3 Research Issues

In the previous section we outlined a three layer

architecture model which is intended as a form of

reference model rather than as a guide to how self

managed software should be implemented. In this

section, we use the model to structure the presentation

of the research issues we see presented by the

challenge of implementing self-managed systems. To

ground this discussion, we draw examples from the

work with which we are most familiar – namely our

own.

3.1 Component Control Layer

We are concerned with management at the

architectural level where we consider a system to

Responsible for re-planning and

introducing new goals

Responsible for executing

changes in the lower layer

based on status changes

Accomplishes the application

functionality of the system

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

3-Layer model

43

underlying component architecture in response to new

states reported by that layer or in response to new

objectives required of the system introduced from the

layer above. This layer can introduce new components;

recreate failed components; change component

interconnections and change component operating

parameters. It consists of a set of plans which are

activated in response to changes of the operating state

of the underlying system. For example, when a

component fails, change management can effect a

repair either by changing component connections or by

creating new components. In robotic systems, this

layer has been implemented in a number of ways from

conditional sequencing systems [10] to sets of state

machines. Work in the network management area has

produced languages such as Ponder [15] which

perform a similar function to the planning languages in

the context of systems. Ponder is essentially a language

which execute actions in response to recognising

(possible complex) events. The essential characteristic

of this change management layer is that it consists of a

set of pre-specified plans which are activated in

response to state change from the system below. The

layer can respond quickly to new situations by

executing what are in essence pre-computed plans. If a

situation is reported for which a plan does not exist

then this layer must invoke the services of the higher

planning layer. In addition, new goals for a system will

involve new plans being introduced into this layer.

2.3 Goal Management

The uppermost layer of Gat’s three layer architecture is

the deliberation layer. This layer consists of time

consuming computations such as planning which takes

the current state and a specification of a high-level

goal and attempts to produce a plan to achieve that

goal. An example in robotics would be given the

current position of a robot and a map of its

environment produce a route plan for execution by the

sequencing layer. Changes in the environment, such as

obstacles that are not in the map, will involve re-

planning. The role of the equivalent layer in a self-

managed system is Goal Management. This layer

produces change management plans in response to

requests from the layer below and in response to the

introduction of new goals. For example, if the goal in

to maintain some architectural property such as triple

redundancy for all servers, this layer could be

responsible for finding the resources on which to

create new components after failure and producing a

plan as how to create and integrate these new

components to the change management layer. It could

be responsible for deciding the optimal placement of

servers for load balancing purposes. As we will

address further in the next section there are many

research issues here as to how to represent high level

system goals, how to synthesize change management

plans from these goals and how general or domain

specific this layer should be.

Figure 1 summarises our proposed three layer model

for a self managed system following Gat’s work on

architectures for robotic systems. The principal criteria

for placing function in different layers in Gat’s

architecture is one of time scale and this would seem to

apply equally well to self managed systems. Immediate

feedback actions are at the lowest level and the longest

actions requiring deliberation are at the uppermost

level. We would emphasize that we do not consider

this an implementation architecture but rather a

conceptual or reference architecture which identifies

the necessary functionality for self management. We

will use it in the next section to organise and focus

discussion of the research challenges present by self

management.

Goal

Management

Change

Management

Component

Control

Status

Change Actions

C1 C2

P1 P2

Change Plans

Plan Request

G

G’ G”

Goal

Management

Change

Management

Component

Control

Status

Change Actions

C1 C2

P1 P2

Change Plans

Plan Request

G

G’ G”

Figure 1 – Three Layer Architecture Model for

 Self-Management.

3 Research Issues

In the previous section we outlined a three layer

architecture model which is intended as a form of

reference model rather than as a guide to how self

managed software should be implemented. In this

section, we use the model to structure the presentation

of the research issues we see presented by the

challenge of implementing self-managed systems. To

ground this discussion, we draw examples from the

work with which we are most familiar – namely our

own.

3.1 Component Control Layer

We are concerned with management at the

architectural level where we consider a system to

• Handles requests from the layer

below and introduction new goals

• Takes state and high-level goal to

produce plan to achieve goal

Reacts to changes in state of the

lower level by execution actions to

handle the new situation

• Set of interconnected components

• Facilities to report current status of

components and perform adaptations

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Mapping existing approaches

▣RQ1 – What are the key characteristics of
approaches for architecture-based self-
adaptation in robotics software?

▣RQ2 – What are the evaluation strategies of
approaches for architecture-based self-
adaptation in robotics software?

44

Alberts, Elvin and Gerostathopoulos, Ilias and Malavolta, Ivano and Hernández Corbato, Carlos and Lago,

Patricia, Software Architecture-Based Self-Adaptation in Robotics. Available at SSRN:

https://ssrn.com/abstract=4805883 or http://dx.doi.org/10.2139/ssrn.4805883

https://ssrn.com/abstract=4805883
https://dx.doi.org/10.2139/ssrn.4805883

Study Design

45

Synthesized results from

28 papers between
2011-2022

Adaptation Goals

46

What is being sensed

47

Mechanisms for decision making

48

What is being changed

49

50

An approach for architecture-based self-adaption

Task and architecture co-adaptation

51

D

2

1

3
Runtime decision: which route to select?

Javier Cámara, Bradley Schmerl, and David Garlan. 2020. Software architecture

and task plan co-adaptation for mobile service robots. In SEAMS 2020

52

Runtime decision: which components to use?

Concerns to consider

▣Timeliness – get to the destination as fast as
possible

▣Safety – avoid obstacles
▣Energy efficiency – minimize used energy

53

Approach: Model everything!

▣The architecture of the robot
□ ROS2 graph and ROS2 arch. style modeled in Alloy

▣The behavior of the robot
□ PRISM model (next slides)

▣The resource usage
□ Energy consumption when executing a task with a

certain configuration

▣The map of the environment
□ Specific to the navigation task

54

Approach: Model everything!

▣The architecture of the robot
□ ROS2 graph

▣The behavior of the robot
□ PRISM model (next slide)

▣The resource usage
□ Energy consumption when

executing a task with a certain
configuration

▣The map of the environment
55

Prism model example

56

s0

s2

s3

s1

{init}

{path 1}

{obstacle}

…

0.9

0.1

1

1

{no obstacle}

s4

module M1

x : [0..2] init 0;
[] x=0 -> (x’=1);
[] x=1 -> 0.9:(x'=2) + 0.1:(x’=3);

[] x=2 -> (x'=2);
[] x=3 -> (x'=2);

[] x=0 -> (x’=4);
endmodule

57

58

59

60

Conclusions

Key Takeaways

▣Self-adaptation can be a powerful technique
for inducing robustness

▣Can also be used for keeping requirements
met at runtime despite uncertainty

▣Co-adaptation of architecture and task can
(quickly) become a complex problem

▣We need (more/better) methods to handle
uncertainties at runtime

61

References

62

	Slide 1: Self-Adaptation in Robotics
	Slide 2: Plan for this lecture
	Slide 3
	Slide 4: Example #1: Web application
	Slide 5: Example #2: Cleaning robots
	Slide 6: Why do we need self-adaptation?
	Slide 7: Business continuity in space?
	Slide 8: Self-adaptation can bridge the gap
	Slide 9: The main idea behind self-adaptation
	Slide 10: Two principles on self-adaptation
	Slide 11: Conceptual model of SAS
	Slide 12: Conceptual model of SAS
	Slide 13: Conceptual model of SAS
	Slide 14: Conceptual model of SAS
	Slide 15: Autonomic manager – MAPE-K reference model
	Slide 16: Autonomic manager – MAPE-K reference model
	Slide 17: Self-* properties
	Slide 18: The seven waves
	Slide 19
	Slide 20
	Slide 21: UNDERSEA
	Slide 22: UNDERSEA: possible runtime changes
	Slide 23: UNDERSEA: let’s pick a configuration
	Slide 24: UNDERSEA: what can go wrong?
	Slide 25: UNDERSEA: runtime reasoning (PRISM, CTMP)
	Slide 26: UNDERSEA: runtime reasoning (PRISM, CTMP)
	Slide 27: UNDERSEA: runtime reasoning (PRISM, CTMP)
	Slide 28: SUAVE
	Slide 29: SUAVE: uncertainties + feedback loops
	Slide 30: SUAVE: uncertainties + feedback loops
	Slide 31: SUAVE: uncertainties + feedback loops
	Slide 32: SUAVE: uncertainties + feedback loops
	Slide 33: SUAVE: uncertainties + feedback loops
	Slide 34: SUAVE: uncertainties + feedback loops
	Slide 35: SUAVE: technical architecture
	Slide 36: SUAVE is available on Github
	Slide 37: Exercise
	Slide 38
	Slide 39: What is software architecture?
	Slide 40: Why architecture-based self-adaptation?
	Slide 41: 3-Layer model
	Slide 42: 3-Layer model
	Slide 43: 3-Layer model
	Slide 44: Mapping existing approaches
	Slide 45: Study Design
	Slide 46: Adaptation Goals
	Slide 47: What is being sensed
	Slide 48: Mechanisms for decision making
	Slide 49: What is being changed
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Concerns to consider
	Slide 54: Approach: Model everything!
	Slide 55: Approach: Model everything!
	Slide 56: Prism model example
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Key Takeaways
	Slide 62: References

