Self-Adaptation in Robotics

llias Gerostathopoulos
Assistant Professor

Software and Sustainability Group
Computer Science Department
Vrije Universiteit Amsterdam
l.g.gerostathopoulos@vu.nl

V 2nd ACM SIGSOFT Summer School for Software
oR° Engineering in Robotics, July 2th 2025

Plan for this lecture

= Self-adaptive systems (SAS): Why & What

Preliminaries & Definitions

m Self-adaptation in robotics: Two example systems
A bilased sample

= Architecture-based self-adaptation
A mapping of existing approaches

E An approach for architecture-based self-adaption
Task and architecture co-adaptation

Self-adaptive systems (SAS): Why & What

Preliminaries

Example #1: Web application

‘ Infrastructure cost

Web server

Web client f Revenue by serving ads

Web server

Web client Load
balancer
Web server

Il Latency within bounds

Number and type of
requests may fluctuate at
runtime (Slashdot-effect)

Web client

Web server

The actual number and
type of requests are
uncertainties only known
Requests can include optional content (e.g. advertisements) during operation

Number of web servers can be increased or decreased (elastic) 4

Example #2: Cleaning robots

| R [
- Ww | Iew .. [
5 e I ’
“ ““ iy
LA
= ™ B N ™
| _ L) by
Aania]
'v:".-h“ ~ _ ~
oW a ad OO a O OCOA a O
a C O0OI PeCO C 00 L d @ ope
P\ 3 ore robots |o <Xe[go]le
P17 S S OO O Ol PO C
™ S O C @ a Ol1d @ S 101010
] :
i Robot ;Da::;cl:;g #$ Dirtiness

Why do we need self-adaptation?

Modern systems (incl. robotics!) —
are subject to uncertainties in

Their environment (e.g. resources) Uncertainties
Their users (e.g. number of requests) need to be
Their internal functioning (e.g. — handled
software faults) .

Their goals (e.g. different du"ng.
prioritization of tasks) operation

Business continuity is essential

Business continuity in space?

» Stage 1: “Resilient System”

« System performs resource management and health management
functions. Executes “tactical” activity plans provided by operations
team. Uses and adapts models of internal state. Control via closed-
loop colmmandmg. dapts detailed plan to address minor
anomalies.

» Stage 2: “Independent System”

- System generates tactical activity plan based on science directives
(“strategic plan”) provided by science team. Uses and adapts
models of internal state and environment. Possible to reduce size

of mission operations team.
 Stage 3: “Self-Directed System”

» System develops science strategic plan and tactical plans based on
high-level objectives. Responds to novelty by adjusting plans within
?ontext of objectives. Possible to reduce size of science operations

eam.

From “Challenges and Opportunities in Robotic Space Exploration”, John Day, NASA 7

UKRI TAS Resilience Node Talk 7, April 2021, https://www.youtube.com/watch?v=yavzrblqOkl

https://www.youtube.com/watch?v=yavzrbIqOkI

Self-adaptation can bridge the gap

Software complexity is increasing more quickly than productivity.

Relative growth of software complexity and productivity over time, indexed for automotive features

4 Complexity
3
2
Productivity
1
2010 2020

McKinsey & Company, “When code is king: Mastering automotive software excellence”, February 17, 2021

The main idea behind self-adaptation

The system itself (instead of its operators)
collects data about its state, environment, and

goals at runtime, resolves any uncertainties, and
adapts to satisfy its goals

Two principles on self-adaptation

External principle:

A self-adaptive system is a system that can handle
uncertainty in its environment, itself and its goals
autonomously (or with minimal human interference)

Internal principle

A self-adaptive system comprises two distinct parts:
the first part interacts with the environment and has
domain concerns; the second part interacts with the
first part and has adaptation concerns, i.e, (usually
conflicting) concerns about the domain concerns.

10

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Conceptual model of SAS

Software system

effect

Environment

Non-controllable software, hardware,
network, physical context

11

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Conceptual model of SAS

pf/”%/e

Self-adaptive software system

including uncertainties +—— input effect

Environment

Non-controllable software, hardware,
network, physical context

12

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Conceptual model of SAS

Self-adaptive software system

Managing system

monitor Instrumentation to monitor & adapt

Ing,
Q/ o f/}?c/
Pl

monitor

Software system

effect

Environment

Non-controllable software, hardware,
network, physical context

13

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Conceptual model of SAS

Self-adaptive software system

Managing system

Managed System

Environment
Non-controllable software, hardware,

monitor

effect

network, physical context

14

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Autonomic manager - MAPE-K reference model

Relieves administrators of
responsibility to directly manage
the managed element

Autonomic manager —==----- >

Element to be monitored

and controlled to realize
Managed element =~==~ -—===2> administrator’s goals

15

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Autonomic manager - MAPE-K reference model

Determines whether
adaptation actions are «.__ |
required based on the
collected data and
administrator’s goals

P ant
Collects data from managed
element and its execution
context to update the

Plans mitigation actions to

Autonomic manager

|.-7 adapt the managed
element when needed

ol
-~y
TS~

Executes the adaptation

\
Managed“element
1

Knowledge.

actions of the generated
plan, adapting the managed
element

1
\ 4

Abstraction of relevant aspects of the managed element (self-awareness),
environment (context-awareness), and the administrator's goals (goal-awareness) .

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Self-* properties

General Level
Self-Adaptiveness
Major Level Self-Configuring Self-Healing
Self-Optimizing Self-Protecting
Primitive Level

Self-Awareness

Context-Awareness

17

The seven waves

ml Research in self-adaptation has been
categorized in seven waves by Danny Weyns

E Focus on how self-adaptive systems are
engineered

EIHighlight research trends and their influences

=l Contribute complementary layers of
knowledge

18

systematic engineering
perspective

1. Automating tasks

> 2. Archltectural principles

‘\:\—/’*\

requirements of self-
adaptive systems

.

4. Requirements-
driven adaptation

\;/{"\

uncertainty as
first-class citizen

:

5. Guarantees under
uncertainties

guarantees under,
uncertainty

theoretical
framework for

requirements for
adaptation

feedback loops complexity of
concrete design

3 Runtime models

\//\

6 Control prmmples

‘___——"'—_\

complexity to provide
assurances

7. Learn from experience

>\’f

growing scale and increasingly
complex levels of uncertainty

SN

Slide credit:Danny Weyns, “An Introduction to Self-adaptive Systems: A Contemporary Software Engineering Perspective”, Wiley 2020

Self-adaptation in robotics: Two example systems

A biased sample

UNDERSEA

pMarineViewer (MIT Version 13.5)

_alpha waypt survey regionA

ElUnmanned Underwater ‘o - gt S
Vehicle (UUV) on an e
environmental surveillance &
mission od |

Contains sensors (water N

current, salinity, temperature)
Each sensor with rate and

r el abl t VName: [alpha | X(m):|-5.2 | Lat:[43823791 | Spd:[36 Dep(m):[0.0 | Time:|150.4 {DEPLOY
| I y VType: |kayak | ¥(m):(-167.6/ Lon:|-70.330431 | Hdg:{330.0 | Age(s):[0.00 | Warp:|2 RETURN:I'

vu-iaue;lwop_rms rm:[uam Va!:ll.27935266

S. Gerasimou, et al "UNDERSEA: An Exemplar for Engineering Self-Adaptive Unmanned Underwater Vehicles," IEEE/ACM
12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2017

UNDERSEA: possible runtime changes

pMarineViewer (MIT Version 13.5)

_alpha waypt survey _regionA

E Increasing/decreasi S L

ng speed of the iwm

Uuv

EETurning sensors
on/off (assuming

they measure the
same thing, e.g,, Given constraints on number of
‘good” measurements & energy per &
X meters, minimize energy,
maximize speed

I: alpha's next waypoint

temperature)

UNDERSEA: let’s pick a configuration

‘Key ¥X%=1%=0,%=0 ®x=0%=1Xx=0 +x=0%=0x=1 ex=1X%=1Xx=0 @ex=1%=0x=1 xx=0%=1 %=1 ex=1, %=1, x=1

280

N

N

o
1

)]

o

o
1

—_

]

o
1

—

N

Qo
1

$ cost

200

Expected energy usage per 10m [J]

I
I
I
' .
] 1604
I
I
I

Expected accurate measurements per 10m

1 2 3N 4 5 1 2 3 4 5
Speed [m@ N / speed [m/s] I speed [m/s]
N
@ ~ (Constraint (b) Weighted average of ©

violations speed and energy

23

UNDERSEA: what can go wrong?

pMarineViewer (MIT Version 13.5)

alpha waypt survey _regionA

mlSensor degradation ¥ &s
. i ? Sensor1 iensorZ Sensor3
leading to lower Spest 30
sensing rates ‘8]
m Sensor failure
(sensor cannot be
used anymore)

mChange of Now, the configuration 2
constraint or “optimization problem” needs to be §

optimization goal solved at runtime!

I: alpha's next waypoint

UNDERSEA: runtime reasoning
(PRISM, CTMP)

module sensor1
Il system states

stateS1 : [0..6] init O; // O:start - 1:0n - 2:read - 3:su

[switchS1]
[switchS1]
[readS1]
[succReadS1]
I

[l

I

I

I

endmodule

Model parameters (their values
measurable at runtime)

- 4: fail - 5:done - 6:0ff

(stateS1=0) & (sensorAthabled) -> 1000.0 : (stateS1'=1);

(stateS1=2) -> p1 : (stateS1'=3);
(stateS1=2) -> (100.0 -p1): (stateS1'=4);
(stateS1=3) -> 1000.0 : (stateS1'=5);
(stateS1=4) -> 1000.0 : (stateS1'=5);
(stateS1=5) -> 1000.0 : (stateS1'=1);
(stateS1=6) -> 1000.0 : (stateS1'=6);

25

UNDERSEA: runtime reasoning
(PRISM, CTMP)

module sensor1

Model parameters (their values
measurable at runtime)

Il system states
stateS1: [0..6] init O; // O:start - 1:0n - 2:read - S:y%-df: fail - 5:done - 6:off

[switchS1]
[switchS1]
[readS1]
[succReadS1
[

[

[

[

[

endmodule

rewards "energy"
[readS1] true : 3;
[readS2] true : 2.4;
[readS3] true : 2.1;
[switchS1] true : sensor1SwitchCost;
[switchS2] true : sensor2SwitchCost;
[switchS3] true : sensor3SwitchCost;
endrewards

26

UNDERSEA: runtime reasoning
(PRISM, CTMP)

module sensor1

Il system states
stateS1: [0..6] init O; // O:start - 1:0on - 2:read - 3

[switchS1]
[switchS1]
[readS1]
[succReadS1
I

[l

I

I

I

endmodule

Model parameters (their values
measurable at runtime)

:ny: fail -

5:done - 6:0ff

rewards "energy"
[readS1] true : 3;
[readS2] true : 2.4;
[readS3] true : 2.1;
[switchS1] true : sensor1SwitchCc
[switchS2] true : sensor2SwitchCc

[switchS3] true : sensor3SwitchCc

R{"measurement"}=? [C<=10/s]

R{"energy"}=? [C<=10/s]

endrewards

27

SUAVE

E Self-Adaptive Underwater Autonomous
Vehicles Exemplar

mScenario: pipeline inspection for a single robot

Search Inspect
Pipeline Pipeline

28

G. R. Silva et al., "SUAVE: An Exemplar for Self-Adaptive Underwater Vehicles," IEEE/ACM 18th
Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2023

SUAVE: uncertainties + feedback loops

1. Water visibility may change during the mission

i

High water visibility and high Low water visibility and high Low water visibility and low
altitude altitude altitude

29

SUAVE: uncertainties + feedback loops

1. Water visibility may change during the mission
Can this influence the mission?
Yes, the effectiveness of searching may be
decreased if the visibility is low
What would we like the robot to do if it would be able
to resolve this uncertainty at runtime?
Go higher when the visibility is high (so that its field
of view is larger)
Can the robot monitor the visibility at runtime?
Yes, with a turbidimeter/nephelometer

30

SUAVE: uncertainties + feedback loops

1. Water visibility may change during the mission

Can the robot change its search strategy at runtime?
Yes, by selecting a different depth to search
(implemented by changing the configuration of
the search function or selecting between search
functions for different depths)

Does it pay off to implement the above feedback

loop?
Our results indicate that the time to find the
pipeline with the loop present gets almost half->
less time equals less fuel, more inspection time

31

SUAVE: uncertainties + feedback loops

2. One of its six thrusters may fail/malfunction

Thruster failure cause the
AUV to deviate from its path

32

SUAVE: uncertainties + feedback loops

2. One of its six thrusters may fail/malfunction

Can this influence the mission?
Yes, the robot may not be able to follow its autopilot
anymore and stray forever and ever

What would we like the robot to do if it would be able

to resolve this uncertainty at runtime?
Fix or replace the failing thruster, or use a back-up
one, or just use the remaining thrusters

Can the robot monitor the thruster failure at runtime?
Yes, through Finite Impulse Response (FIR) and
Principal Component Analysis (PCA) 33

SUAVE: uncertainties + feedback loops

2. One of its six thrusters may fail/malfunction
Can the robot deal with failed/malfunctioning
thrusters at runtime?

Yes, by restarting them (assumption!)
Does it pay off to implement the above feedback
loop?
Our results indicate that the length of the pipeline
Inspected is increased by 50% with the loop =2
more efficient missions

34

Managing Subsystem —_p [POS Topics L | ROS Moses
and Senioes

SUAVE: technical —ER O o

Analyze & Plan & KB

imrosirequest_conliguration

architecture e -

Manitor
[weater Wisibilicy] ; System Modes]
Ohserver | o -] Bridge |
Imrosfobjpective e

[' (adoptionGoal | | | services
Thrusters Mnnﬂ.o-'. [Bridge] ¥ "

= Essentially, water ~ - (vt

visibility and —

thruster states are '"'“"““”“”TTM e — i

monitored and I
ROSZ Com ponents lopics & services ¥

are reconfigured E= | lm

gazebo topics

|E| M ROS, SyStem 1 :m::::;r;nmatn{:;ﬁ

| MAVROS |

modes Emvironment p— |
| Gazabo L transport » Ardus;ﬂ;:.zem

SUAVE is available on Github

« (&) QO & https://github.com/kas-lab B % ® L N @O @ * S o © » @B &
= = °
= O kas-lab | suave Q Type [/ to search D= + - olinle
. .
G Ive It a try ' <> Code () Issues 15 11 Pullrequests (3 Discussions () Actions [Projects [OJ wiki @ Security |2 Insights 8 Settings
]
#K suave Public ®Unwatch 5 ~ Y Fork 9 ~ ¢ Star 24
¥ main ~ # 3 Branches © 4 Tags Q Go to file t Add file ~ <> Code ~ About o
An Exemplar for Self-Adaptive
@' Rezenders Merge pull request #169 from kas-lab/mc_reasoner & 038d1e5 - 10 hours ago {1 536 Commits Underwater Vehicles performing pipeline
inspection
.github/workflows % add suave_monitor and suave_metrics to Cl file 3 weeks ago
@ kas-lab.github.io/suave/
docker w fix dockerfile for new suave and ardupilot_plugin versi... last week
robotics ros ros2
docs # delete files generated by sphinx 3 weeks ago self-adaptive-systems marine-robotics
runner add support for bt in the runner 13 hours ago 0 Readme
SCIte- suave \ change 127.0.0.0 to 0.0.0.0 in mavros launch 17 hours ago 88 Apache-2.0 license
1 A~ Activity
0 suave_managing # remove SuaveReasoner 13 hours ago X
0 =) Custom properties
0 suave_metrics get time from msg 13 hours ago Yr 24 stars
i y . ® 5 watching
! suave_missions \ adjust suave_mission launchfile 17 hours ago
9 forks
suave_monitor publish battery_level as soon as it charges last week Report repository
suave_msgs add task srv last year
Releases 4

Autonomic manager

L I) [(RS |

Managed element

l. Identify some uncertainties in the robotic
systems you are working with

II. For each uncertainty, answer the following:
Can it influence the mission?
What would we like the system to do if it would be able
to resolve this uncertainty at runtime?

Can the robot monitor at runtime quantities that can
resolve the uncertainty?

Can the robot change its behavior at runtime to
recover or optimize itself?

Does it pay off to implement the above feedback loop? ™

Architecture-based self-adaptation

A mapping of existing approaches

What is software architecture?

E Fundamental structure of a software system

B Important is the process to arrive to the
structures: architectural decisions

E] Related termes:
Design patterns (e.g. Gang of Four* patterns)
Architectural styles (e.g. MVC)
Component models (e.g. OSCl)

39
* See book: “Design Patterns: Elements of Reusable Object-Oriented Software”

Why architecture-based o C)
- ion? t
self-adaptation? tIII

I 31

[Separation of concerns)0

El Integrated approach

E Leveraging consolidated efforts

m] Abstraction to manage system change
E Dealing with system-wide concerns

= Facilitating scalability

40

3-Layer model

‘Components automatically configure their interaction in a
way that is compatible with an overall architectural
specification and achieves the goals of the system.”

“... the architectural level seems to provide the required
level of abstraction and generality to deal with the
challenges posed by self-adaption.”

J. Kramer and J. Magee, Self-adaptation: an architectural challenge, Future of Software Engineering, 2007
E. Gat, Three-layer Architectures, Artificial Intelligence and Mobile Robots, MIT/AAAI Press, 1997

41

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

3-Layer model
5 Responsible for re-planning and
_---==""""introducing new goals

Goal

Management el el
* Change Plans _ _
, i Responsible for executing
ch Plan Request U » changes in the lower layer
nage P1) [Pp2] - based on status chan
Management ased on status changes
Change Actions
1 |
Status *

Component
Control C1 c2
_______________________________ . Accomplishes the application

functionality of the system i

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

3-Layer model

» Handles requests from the layer

- -7 below and introduction new goals
____——""— « Takes state and high-level goal to
o= produce plan to achieve goal
Goal !\
Management | ¢ | | & |
* Changle Plans _
, i: Reacts to changes in state of the
Plan Request __---=> lower level by execution actions to
Change P1 J P2 J - handle the new situation
Management _
* Changti Actions
Sta:‘us *

Component
Control C1 C2 « Set of interconnected components

___________________________ « Facilities to report current status of

components and perform adaptations
43

Slide credit: Danny Weyns, “Tutorial: Engineering Self-Adaptive Systems - An Organized Tour”

Mapping existing approaches

= RQI1 - What are the key characteristics of
approaches for architecture-based self-
adaptation in robotics software?

ERQ2 - What are the evaluation strategies of
approaches for architecture-based self-
adaptation in robotics software?

Alberts, Elvin and Gerostathopoulos, llias and Malavolta, Ivano and Hernandez Corbato, Carlos and Lago,

Patricia, Software Architecture-Based Self-Adaptation in Robotics. Available at SSRN:
https://ssrn.com/abstract=4805883 or http:/dx.doi.org/10.2139/ssrn.4805883

44

https://ssrn.com/abstract=4805883
https://dx.doi.org/10.2139/ssrn.4805883

Study Design

Planning Conducting
' N ~
Phase 1: Planning Phase 2: Search and selection
Review needs Goal and RQs Protocol Proceedings Keyword-based Prellm!nary Fln_al .
. . ; L L > . studies studies Snowballing
identification definition definition collection search selection selection
: ! ! . . ! EA ! 19!
1 : 4 -7 i v 08 3 : h 4
; . N C Y Y D . AR I s ¢
' = |g---» — Inter-rater 2 —_
O » — —_ checks | __..._ » —
Research External Robotic Self-adaptive Architecture 2,023 potentially 33 primary
L protocol evaluator) venues venues venues relevant studies studies
Conducting Conducting Reporting
Phase 3: Data extraction Phase 4: Data synthesis Phase 5: Reporting
. | . Replication .
Themayc ‘;[Conter_lt Narratlv_e | »| Report writing package Synth esi Zed res UItS from
analysis | analysis synthesis | preparation
: : : ; 28 papers between
1 L Ll Ll
" U U
v y v v 2011-2022
@ Answers to RQs
\._/-—\
Classification Extracted Quantitative Final report Replication
framework data* results N package

45

Adaptation Goals

Recover from errors/faults -

Optimize resource usage -

Deal with environmental changes -

Optimize system performance -

Change functional behavior -

Keep meeting QRs at runtime -

Recover from attacks -

Num. Occurrences

46

What is being sensed

Managed System -

Environment -

Mission -

10 15 20
Num. Occurrences

o -
w

47

Mechanisms for decision making

Constraint Solving/Model Checking -

Search Procedure -

Domain-Specific Algorithm -

Ontological Reasoning -

Utility Calculation -

Al Planner -

Numerical Optimization -

Num. Occurrences

48

What is being changed

Reparameterization of Component(s) -

Addition and/or Removal of Component(s) -

Change in Relationship(s) Between Components -

Component Redeployment -

0.0 2.5 5.0 7.5 10.0 125
Num. Occurrences

49

An approach for architecture-based self-adaption

Task and architecture co-adaptation

-~

—

=——=<—"=Unsafe areas

Runtime decision: which route to select?
3 | k-'lJ J
e |
- — — —— _ i - —_l_
|
1
I Dark Areas

—| Javier Camara, Bradley Schmerl, and David Garlan. 2020. Software architectyre

and task plan co-adaptation for mobile service robots. In SEAMS 2020

Runtime decision: which components to use?

Provides light in dark corridors

; : Headlamp: useful
Terrible efficiency . AL ATy

. in dark corridors
Only helps with cameras ‘

Provides 2D image of behind | Back camera: images
Excellent efficiency behind the robot
Not good in the dark

OK obstacle detection Planar Lidar: depth

Provides 2D planar depth field | scans in a plane !

Reasonable efficiency
Not good at obstacle detection

Kinect Sensor: depth
and camera images

Provides 3D depth field/2D image
Excellent efficiency

Needs transform component to
convert depth image to lidar info

Category Name Energy cost Accuracy Requires
Sensing lidar Medium Bad -
kinect Excellent Good laserscanNodelet
camera Excellent Medium markerRecognizer
headlamp (when dark)
Localization amcl Excellent Excellent -
mrpt Medium Good -
aruco Bad Good -
Auxiliary laserscanNodelet N/A N/A -
markerRecognizer N/A N/A -

headlamp Really bad N/A -

52

Concerns to consider

= Timeliness — get to the destination as fast as
possible

=] Safety — avoid obstacles
= Energy efficiency - minimize used energy

53

Approach: Model everything!

EThe architecture of the robot
ROS2 graph and ROS2 arch. style modeled in Alloy

EThe behavior of the robot
PRISM model (next slides)

EThe resource usage

Energy consumption when executing a task with a
certain configuration

EThe map of the environment
Specific to the navigation task

54

Approach: Model everything!

Analysis Planning
Mission Analyzer PRISM planner searches
1 : configuration and path
= The architecture Energy Predictor o imnizing, utlity
ROS2 graph Knowledge (models)
EThe behavior of t | EL.; Powar Softres
PRISM model (ﬂE Egdsezozlgz S -~ | Translate plans
' e to instructions
~ Actions o
EThe resource usc i = and enact.
ission Robot
Energy consump |Monitoring] Execution

executing a task"
configuration

EThe map of the €

=

—

!

Prism model example

{no obstacle

0.1

0\ {obstacle}

module M1
x :[0..2] init O;
[x=0-> (x'=1);
[] x=1->0.9:(x'=2) + 0.1:(x’=3);
[x=2 -> (x'=2);
[x=3 -> (x'=2);
[x=0 -> (x'=4);
endmodule

56

Architecture

Architecture style '

Configuration Synthesis

Available components (D
\/

Model Generator

Table 1 Alloy

Synthesizer using Alloy

Spec

Architecture Config.

Legal configs

1. Generate possible
legal architectures.

Task
|Task attribute quantifiers |

Resource::Power
Reconfiguration primitive

3) energy consumption

Architecture

Legal configs

Reconfiguration primitives

Architecture Reconfig.

Model Generator

| Listing 1 | PRISM
_________ Spec

Architecture Reconfig

Planner using PRISM

| Reconfiguration plansi --

2. Generate adaptation
plans to adapt robot
software architecture.

Architecture i Resource::Power
(: JCurrent architecture Robot operations

(T mmmmmmmmomeemeiseeooooooo o |Reconfiguration plans/ 1 energy consumption

Task p Task .
RObOt location Task attribute quantifiers Ph .su:al Env.
) (bute qua
97 P 8)Safety Attributes

Preferences
4) Battery level
Robot operations

Legal paths [l ----- L2 r
Q

Task Planner
using PRISM

-

Architecture Reconfiguration Planning Pipeline

3. Generate legal plans 4. Quantitative analysis of each mission
to complete mission. to find best software adaption.
Pick the best.
»> - >

Task Planning Pipeline

57

module robot
b:[0..MAX_BATTERY] init INITIAL_BATTERY;@) // Task view
1:[0..MAX_LOCATIONS] init INITIAL_LOCATION;(® // Task view
c:[1..M] init init INITIAL_CONFIGURATION;®) // Architecture view
rd: bool init false; collided: bool init false;
..// One command per legal target configuration
[t_set_conf_M] (c!=conf_M) & (b>MIN_BATTERY +deplete_battery_reconfM
) & (Ird) & (!stop) —> (c'=conf_M) & (rd'=true) & (b'=b—deplete_battery_reconfM);
... // One command per combination of legal config/arc among adjacent map locations
[Ix_to_ly] (I=Ix) & (!stop) & (c=conf_M) —>p_col_conf_M_Ix_to_ly®
:(I'=ly) & (b'=b_upd_Ix_ly@) & (collided'=true) + 1—(p_col_conf_M_Ix_to_ly):
(I'=ly) & (b'=b_upd_Ix_ly) & (collided'=false);
10 endmodule
11 formula b_upd_Ix_ly= c=conf_1? max(0,b-e_Ix_ly_conf_1): ... (c=conf_M?
max(0,b-e_Ix_ly_conf_M) : 0);@ // One per arc between adjacent map locations

Resource::Power

Robot operations
11 energy consumption
Physical Env.
[Distances_(10)
8)Safety Attributes

jask Planning
Mdgel Generator

NN e W -

o oo

13 const INITIAL_LOCATION; B o=
14 const TARGET_LOCATION;® // Task view B
15 formula goal = I=TARGET_LOCATION;

16 formula stop = goal | b<MIN_BATTERY;

17 rewards "time"

18 [Ix_to_ly] true :c=conf_17? t_Ix_Iy_conf_l. i...c=conf_M?t_Ix_ly_conf M:
MAX_BATTERY; // One per arc between adjacent map locations;

/!

iask Planner
using PRISM

20 [t_set_conf 1] true :c=conf _27? t_set_conf_Z_conf_1® A . -
:...c=conf_M ? t_set_conf_M_conf_1:0; ... // One per legal target configuration 4. Q_ua ptitative analysis of e_HCh mission
21 endrewards best software adaption.
22 rewards "energy"
23 stop : b; -
endrewards z lanning Pipeline

58

module robot
b:[0..MAX_BATTERY] init INITIAL_BATTERY;@) // Task view
1:[0..MAX_LOCATIONS] init INITIAL_LOCATION;(® // Task view
c:[1..M] init init INITIAL_CONFIGURATION;®) // Architecture view
rd: bool init false; collided: bool init false;
... // One command per legal target configuration
[t_set_conf_M] (c!=conf_M) & (b>MIN_BATTERY +deplete_battery_reconfM
) & (rd) & (!stop) —> (c'=conf_M) & (rd'= true) & (b =b—deplete_battery_reconfM);
..// One command per combination of legal canfig among adjacent map locations
[Ix_to_ly] (I=Ix) & ('stop) & (c=conf _ @ —p_col_conf M_Ix_to_ly® >
(I'=ly) & (b’=b_upd_|x_|y®) & (co ided=trae) T 1— p_col_conf_M_Ix_to_Iy):
(I'=ly) & (b'=b_upd_Ix_ly) & (collided'=false);
10 endmodule
11 formula b_upd_Ix_ly= c=conf_1? max(0,b-e_Ix_ly_conf_1): ... (c=conf_M?
max(0,b-e_Ix_ly_conf_M) : 0);@ // One per arc between adjacent map locations

Resource::Power

Robot operations
11 energy consumption
— Physical Env.
[Distances_(10)
8)Safety Attributes

NN e W -

o oo

jask Planning
Mdgel Generator

const INITIAL_LOCATION; R
14 const TARGET_LOCATION;® // Task view L 2-
15 formula goal = I=TARGET_LOCATION;

16 formula stop = goal | b<MIN_BATTERY;

17 rewards "time"

18 [Ix_to_ly] true :c=conf_17? t_Ix_Iy_conf_] i...c=conf_M?t_Ix_ly_conf M:
MAX_BATTERY; // One per arc between adjacent map locations;

/!

iask Planner
using PRISM

[t set conf 1] true :c=conf_2?t_set_conf 2 conf 1@ 2 . lvsis of h missi
.c=conf_M ? t_set_conf_M_conf_1:0; ... / One per legal target configuration : Qua itative analysis o each mission
21 endrewards best software adaption.

22 rewards "energy"
23 stop : b;
endrewards z lanning Pipeline

59

Conclusions

Key Takeaways

E Self-adaptation can be a powerful technique
for inducing robustness

ECan also be used for keeping requirements
met at runtime despite uncertainty

= Co-adaptation of architecture and task can
(quickly) become a complex problem

E We need (more/better) methods to handle
uncertainties at runtime

61

References

62

	Slide 1: Self-Adaptation in Robotics
	Slide 2: Plan for this lecture
	Slide 3
	Slide 4: Example #1: Web application
	Slide 5: Example #2: Cleaning robots
	Slide 6: Why do we need self-adaptation?
	Slide 7: Business continuity in space?
	Slide 8: Self-adaptation can bridge the gap
	Slide 9: The main idea behind self-adaptation
	Slide 10: Two principles on self-adaptation
	Slide 11: Conceptual model of SAS
	Slide 12: Conceptual model of SAS
	Slide 13: Conceptual model of SAS
	Slide 14: Conceptual model of SAS
	Slide 15: Autonomic manager – MAPE-K reference model
	Slide 16: Autonomic manager – MAPE-K reference model
	Slide 17: Self-* properties
	Slide 18: The seven waves
	Slide 19
	Slide 20
	Slide 21: UNDERSEA
	Slide 22: UNDERSEA: possible runtime changes
	Slide 23: UNDERSEA: let’s pick a configuration
	Slide 24: UNDERSEA: what can go wrong?
	Slide 25: UNDERSEA: runtime reasoning (PRISM, CTMP)
	Slide 26: UNDERSEA: runtime reasoning (PRISM, CTMP)
	Slide 27: UNDERSEA: runtime reasoning (PRISM, CTMP)
	Slide 28: SUAVE
	Slide 29: SUAVE: uncertainties + feedback loops
	Slide 30: SUAVE: uncertainties + feedback loops
	Slide 31: SUAVE: uncertainties + feedback loops
	Slide 32: SUAVE: uncertainties + feedback loops
	Slide 33: SUAVE: uncertainties + feedback loops
	Slide 34: SUAVE: uncertainties + feedback loops
	Slide 35: SUAVE: technical architecture
	Slide 36: SUAVE is available on Github
	Slide 37: Exercise
	Slide 38
	Slide 39: What is software architecture?
	Slide 40: Why architecture-based self-adaptation?
	Slide 41: 3-Layer model
	Slide 42: 3-Layer model
	Slide 43: 3-Layer model
	Slide 44: Mapping existing approaches
	Slide 45: Study Design
	Slide 46: Adaptation Goals
	Slide 47: What is being sensed
	Slide 48: Mechanisms for decision making
	Slide 49: What is being changed
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Concerns to consider
	Slide 54: Approach: Model everything!
	Slide 55: Approach: Model everything!
	Slide 56: Prism model example
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Key Takeaways
	Slide 62: References

