Verification and Validation (V&V)
of Autonomous Robots

Dr. Michaela Klauck, Bosch Research, Germany

July 3rd, 2025

ACM SIGSOFT Summer School for Software Engineering in Robotics
Delft, The Netherlands

CONVINCE..

BOSCH

Bringing Formal Methods to Autonomous Systems Engineering
Motivation

2 Dr. Michaela Klauck | 03.07.2025

Complexity of Robotic Systems CONVINCE:.
Motivation

Planning # Sources of complexity

Custom (sub)tasks with platform-
Executive specific constraints and rules

SN Generalization to unknown
environments

.

v Y N
Skills SLAM SN pathControl

How to verify the system works
robustly in all possible
conditions?

Environment EEES

Dr. Michaela Klauck | 03.07.2025
3 BOSCH

CONVINCE CONVINCE-.
Vacuum Cleaner Use Case

BOSCH

Dynamic Deliberation with Behavior Trees
Defining the System‘s Behavior

drive right drive left

BOSCH

Use Cases CONVINCE-.
Dynamic Deliberation with Behavior Trees

Excerpt of edge
cleaning BT

(blurred for confidentiality reasons)

6 Dr. Michaela Klauck | 03.07.2025 BOSCH

Vacuum Cleaner Use Case Challenges CONVINCE-..
Motivation

Overall objective:
« High cleaning coverage (in given time)
o Getinto niches

o Don’t be too conservative to clean close to obstacles

o Depends on environment

Operational Constraints:

* Prevent from getting stuck
* Don't get damaged
« Don't damage objects in the environment

7 Dr. Michaela Klauck | 03.07.2025 BOSCH

Performance Measurements CONVINCE-:.
Cleaning Coverage, Long-term Cleaning Task Completion, Obstacle Clearance

« Computed in percentage of room surface covered

« More complex settings by adapting test rooms

« Real-life appartments of test users

« Verify that robot learns how to deal with problematic areas over a time of two weeks
« Move small obstacles away to reach and clean additional space

|[EC-62885-7 Test Room
8 Dr. Michaela Klauck | 03.07.2025 BOSCH

Similar Challenges for Other Autonomous Systems CONVINCE..
Motivation

* Problem: Avoiding dangerous situations vs.
Staying operational & having clever contingency handling

* How to make sure that anomalies are handled efficiently?
* Preprogrammed behavior
 Learning
« Sjtuation understanding & root cause analysis
* Monitoring, testing
* Formal verification
« Or a mixture of all?

Dr. Michaela Klauck | 03.07.2025
BOSCH

Toolbox Components
Verification, Monitoring, Planning, Situation Understanding

convince-project.github.io, B % ¥ Q Suchen

/ CONVINCE Toolchain Overview View page source

CONVINCE..
: CONVINCE Toolchain Overview

Search docs
Street, Warsame, Mansouri, Klauck, §) Welcome to the CONVINCE toolchain documentation. The goal of the CONVINCE project s to
HenkeL Lampacrescia, Pa|mas, Tutorials provide an open source toolchain to improve robust robot deliberation with the help of planning,
Lange Ghiorzi, Tacchella, Azrou, learning, and model checking techniques.
Lallement, Morelli, Chen, Wallis,
Bernagozzi, Rosa, Randazzo,
Faraci, Natale.
Towards a Verifiable Toolchain for
Robotics.
Proceedings of the AAAI
Symposium Series 2024.

This is the entry-point for the CONVINCE toolchain documentation. It provides an overview of all
the individual components which are part of the large toolchain. Those components can be used
standalone and also linked together as required for individual use cases.

Best Paper Award

i \
\
\
\
\,
\
\
\ 7
\
\,
\, o
e Legend
S LN M (e it pese Hew
...... > flioetind'y

' https://convince-project.github.io/overview/
r. Michaela Klauck | 03.07. BOSCH

https://convince-project.github.io/overview/

Industrial Use Cases CONVINCE-.
Vacuum Cleaning Robot & Autonomous Assembly Robot

« Adapt dynamically to environment « Robust assembly: select, grasp,
* Model checking reduces need for generate placement poses taking into
timely & costly field tests account dependencies between parts

& geometry of environment
« Detect defects and assembly anomalies

* Prax(stuck) < threshold + no-defects > exec-time < 5 min
* close-to-dock - docking-time < 5 sec * not-fixable > replan A part-pulled
P.in(Cleaning-coverage > thershold)

Dr. Michaela Klauck | 03.07.2025
BOSCH

Model Checking Tooling

Overview

Properties Model
Checker

\ 4

.

Dr. Michaela Klauck | 03.07.2025
BOSCH

Outline
How to Formally Verify Robotic Systems with Model Checking?

« Theoretical Foundations
* Transition Systems
« Markov Decision Processes (MDPs)
« Linear Temporal Logic (LTL)

« Model Checking (MC)
* Probabilistic Full State Space MC with Value lteration
 Statistical Model Checking

* Modeling Formats & Languages: JANI & SCXML

« Real World Application Example: Model Checking in Industry
« The CONVINCE Project

 Model Checker Tool Demo: The Modest Toolset, Storm & SMC Storm
« Hands-on: Modeling & Model Checking of Robot Behavior

Dr. Michaela Klauck | 03.07.2025

BOSCH

Theoretical Foundations

Transition Systems,
Markov Decision Processes,
Linear Temporal Logic

BOSCH

Formal Models

BOSCH

History
A Long Journey in the Footsteps of Famous Personalities

* Ensuring correctness in programs with mathematical techniques: Turing, 1949

* Proof rules for sequential programs: Hoare, 1969
« Correct ouput for given input?
* Predicate logic to formulate proof rules
* Proof rules for concurrent programs: Pnueli, 1977
« Check correctness of infinte runs
« Temporal logic to formulate proof rules
« Automated verification: Emerson, Clarke, Sifakis 1981
« Systematic state space exploration

* Model checking:
Given model of a system & formal property
« Automatically and systematically check if property holds on model

Dr. Michaela Klauck | 03.07.2025
BOSCH

Classical Model Checking

Overview
=¢| requirements system {55}
£ :
property system
specification model
\ model L
checking
V satisfied insufficient violated: x
ressources counterexample
Dr. Michaela Klauck | 03.07.2025 BOSCH

Classical Model Checking
System Types - Model Types

 Finite-state reactive systems: Markov Chains (MC), Markov Decision Processes (MDP),
Discrete-Time Markov Chains (DTMC)

« Hardware, distributed protocols, discrete controllers
* Non-terminating, concurrent, cooperating
* Timed automata
« Real-time controllers, embedded systems
* Finite-state systems + clocks
* Infinite but underlying state space is finite
* Infinite-state systems
« Software
* Finite-state systems + data

Dr. Michaela Klauck | 03.07.2025
BOSCH

How to Model System Behavior?
Transition Systems

* Directed graph

« Nodes to represent system state

» Edges to represent transitions between states
« States:

« Hardware: current value of registers + values of input bits

« Software: current values of program variables + program counter
« Transitions:

« Hardware: change of registers and output bits for new input

« Software: execution of program statement

Dr. Michaela Klauck | 03.07.2025
BOSCH

How to Model System Behavior?
Transition Systems

A transition system TS is a tuple (S, Act, =, |, AP, L) where:
* Sis a set of states
Act is a set of actions

- € S x Actx Sis a transition relation _
repair
| € Sis a set of initial states

AP is a set of atomic propositions

L: S > 2APis a labeling function

deliver

deliver

Dr. Michaela Klauck | 03.07.2025
BOSCH

Example: Transition System
Beverage Vending Machine with Nondeterminism

repair

deliver

deliver

Dr. Michaela Klauck | 03 .07.2025 BOSCH

Nondterminism and it‘s Flavors
How to use it? N

repair

Concurrency: logically simultaneuos, most general
Parallelism: actually simultaneous

deliver

— deliver

Separate processors available: Only one processor available:

orl d F--fe]---— A o[d F----{e}---m-mmmmm- A

gL e b B e A S i :

& [A[T }---------~ c S bmmmm e R C

time g time g
To model:
« Concurrency by interleaving A yA\b‘
« Implementation freedom a b
P . l Bl by a
« Under-specified or abstract systems B
Dr. Michaela Klauck | 03.07.2025 BOSCH

Example: Transition System
Beverage Vending Machine with Nondeterminism

repair

Example Executions: de'iver\\

get_sprite pay . deliver

« select — > sprite —> pad —

deliver get_sprite

pay .
« select — > coke — select —— coke —* paid —— select

get _coke abort get_coke

get_coke deliver

 select coke . paid broken terminal

Dr. Michaela Klauck | 03.07.2025
BOSCH

How to Model System Behavior?
Markov Decision Processes

A Markov decision process MDP is a tuple (S, Act, 2, s,, G) where:
* Sis a set of states
Act is a set of actions

- € S x Act x D(S) is a partial transition probability function
(into the discrete probability distributions D(S) over S)

Sois the single initial state

G € Sis a set of goal states

Dr. Michaela Klauck | 03.07.2025
BOSCH

Example: Markov Decision Process
Beverage Vending Machine with Nondeterministic & Probabilistic Actions

repair
select

@ deliver
delivered

25 Dr. Michaela Klauck | 03 .07.2025 BOSCH

deliver

Example: Markov Decision Process
Beverage Vending Machine with Nondeterministic & Probabilistic Actions

Variables: o
numsS: int select
numcC: int numC>0 ve broken = false

&S
money: float &

. 0.2

broken: bool 0.8

insert >= cost: insert >= cost:

numcC -- v nums --

deliver
deli money += insert
eliver

broken = true

guards money += insert
, delivered
assignments

2 6 Dr. Michaela Klauck | 03.07.2025

BOSCH

. . . Process 1 || Process 2:
Parallelization & Interleavings

non-critical,
Systems with Multiple Processes (e,

it
Process 1: PrOCESS 2: y=y+1 \r,1v§rl1-10riticalz
y>0:
non-critical; non-critical, critical, Y7V

non-critical,

y=y+ wait, y=y+1 wait,

critical,

y>0: y=y-1 y>0: y=y-1 wait,

critical, critical, y=y+1

y>0: y=y+1

non-critical,

{ critical,

y=y+1

y=0: lock is currently taken
y=1:lock is free

critical
critical,

&)

/"I
/
((m , Ca, y:0)>|

Dr. Michaela Klauck | 03.07.2025

BOSCH

Parallelization & Interleavings
Problems to Avoid

BOSCH

Parallelization & Interleavings
Problems to Avoid

Fairness

Does the program Inc || Reset terminate (x shared, initially 0)?

Inc := while (x >=0) : x = x+1
Reset := x = x-1

No, it is not guaranteed that Reset is executed eventually.

Fairness constraints needed: Concurrency = interleaving + fairness
Fair resolution of nondeterminism to rule out unrealistic runs

Dr. Michaela Klauck | 03.07.2025 BOSCH

Parallelization & Interleavings
Problems to Avoid

Fairness Types:
« Unconditional fairness: actions are executed infinitely often

« Strong fairness: if an action is infinitely often enabled (not necessarily always)
it has to be executed infinitely often

« Weak fairness: if an action is continuously enabled (no temporary disabling)
it has to be executed infinitely often

Unconditional fairness =» strong fairness =» weak fairness

Choose the right fairness for your case:
Assumption too strong: verification could indicate that everything works as expected but some relevant

execution breaking it could be ruled out
Assumption too weak: verification could indicate a problem in an unreasonable run

Dr. Michaela Klauck | 03.07.2025
BOSCH

Parallelization & Interleavings
Problems to Avoid

F = ((Z):\{{ enter; }, { enter, }}; \{{ req; }.{ req, }})

F. strong F weak

in any F’-fair execution each process infinitely often requests access

Dr. Michaela Klauck | 03.07.2025
31 BOSCH

Parallelization & Interleavings
Problems to Avoid

Deadlocks

ProceSS 12 non-critical-r1, Process 2: non-critical-r1,

non-critical, non-critical,

criticaly critical,

y=0: lock is currently taken
y=1:lock is free
ry, I, = 0/1: ressource free/ taken

Dr. Michaela Klauck | 03.07.2025 BOSCH

Parallelization & Interleavings
Problems to Avoid

Sufficient & Necessary Criteria for a

Deadlocks Deadlock:

* Mutual Exclusion:
non-critical-ri, Ressources are used
exclusively by agents, they can
only be used by one at a time

Process 1: non-critical-r1, Process 2:

non-critical,

non-critical,
* No Preemption:

y=y+1 y=y+1 Ressources can only be freed

r=0 r,=0 by the agents holding them

E r2=0 * Hold and Wait:

- Agents need access to other
criticaly critical, ressources but already hold

exclusive acces to some of them
: » Circular Wait:

=0: n . . .
y=0: lock !s currently take There is a circularity of needs
y=1:lock is free
ry, I, = 0/1: ressource free/ taken

Dr. Michaela Klauck | 03.07.2025 BOSCH

Parallelization & Interleavings
Composition by Handshaking %9

Some actions can be performed with a handshake between multiple systems/automata:

« Set of handshake actions: need to be performed synchronously together in all participating
systems

« Set of independent actions: are executed independently in the automata, interleaved

Production-Line: Counter: Production-Line ||, .n4shake COUNtEr
with Handshake = {{output, count}, {reset, reset}}
()

manufacture reset count

manufacture
reset

reset

output+count

Dr. Michaela Klauck | 03.07.2025
BOSCH

Properties

Linear Temporal Logic

BOSCH

Expressing Properties
Linear-Time Temporal LogiC nueit977)

atomic proposition PS
ae AP

next operator
O ®

®-
O
O
O

until operator
aUb @

@®-

36 Dr. Michaela Klauck | 03.07.2025 BOSCH

Expressing Properties
Linear-Time Temporal Logic — Derived Operators

O = truelUop
Op = Oy
boolean connectives vV, =. <. ... as usual

. a a
until operator

a b
aUb .7 ". . . .

b
eventually operator
b e O O @ @

a a

a a
always operator
o O O O O O

BOSCH

Linear Temporal Logic
Example: Traffic Light

It always holds that the light does not become green immediately when beeing red:

: , O(red = —QOgreen)
« Eventually, the light becomes green again: <{green

« |t always holds that the light always becomes green eventually when beeing red:
O(red = green)

« When beeing red the light always becomes green eventually after being yellow for
some time inbetween:

O(red = O(red U (yellow A O(yellow U green))))

Dr. Michaela Klauck | 03.07.2025
BOSCH

Linear Temporal Logic
Fairness Properties

Fairness Types: E and T: propositional logic formulas, E: something is enabled, T: something is taken
« Unconditional fairness: actions are executed infinitely often

O&T

« Strong fairness: if an action is infinitely often enabled (not necessarily always)
it has to be executed infinitely often

OCe->OOT

« Weak fairness: if an action is continuously enabled (no temporary disabling)
it has to be executed infinitely often

OO E>OOT

Dr. Michaela Klauck | 03.07.2025
BOSCH

Linear Temporal Logic
Safety & Liveness Properties

Safety Properties:
« Something bad will never happen

« Parallel Processes with write access to the same variable:
Process 1 and process 2 are never in their critical sections at the same time

[] (critical, A critical,)
« Are violated in finite time, finite counter example traces can be found

Liveness Properties:

» Eventually something good will happen

« Whenever a process waits to enter its critical section, it will eventually be able to enter it.
[(wait, 2 critical))

« Are violated in infinite time, finite traces do not help to decide, no prefix is ruled out

« To prove liveness, fairness is typically needed (to prove progess, progess needs to be possible)

Dr. Michaela Klauck | 03.07.2025 BOSCH

Model Checking

BOSCH

A First Glimps on Model Checking
Example on a Transition System

{avb} T {a'-b}

L

{a}

BOSCH

A First Glimps on Model Checking
Example on a Transition System

— 5 52\.
{avb} T {a'-b}
» TS|=Da?

L

{a}

BOSCH

A First Glimps on Model Checking
Example on a Transition System

{avb} T {a'-b}

» ISEDOa? Yes

L

{a}

BOSCH

A First Glimps on Model Checking
Example on a Transition System

{avb} T {a'-b}

» ISEDOa? Yes
» St EO(anb)?

L

{a}

BOSCH

A First Glimps on Model Checking
Example on a Transition System

{avb} T {a'-b}

» ISEDOa? Yes
» S =0O(anb)? Yes

L

{a}

BOSCH

A First Glimps on Model Checking
Example on a Transition System

{avb} T {a'-b}

» ISEDOa? Yes
» S =0O(anb)? Yes
» ISEO(anb)?

L

{a}

BOSCH

A First Glimps on Model Checking
Example on a Transition System

—q/s; s \
o "/

{avb} T {a'-b}

» ISEDOa? Yes
» S =0O(anb)? Yes
» TS| O(anb)? No, because s3 = O(an b)

L

{a}

BOSCH

A First Glimps on Model Checking
Example on a Transition System

FL
s %) :
\ Y, _
{ab} R {a. b} {a}

IS = 0a? Yes

St EO(anb)? Yes

IS = O(an b)? No, because s3 [~ O(aA b)
ISEO(—-b=0O(aA—b))?

vy v v ¥

Dr. Michaela Klauck | 03 .07.2025
49 BOSCH

A First Glimps on Model Checking
Example on a Transition System

FL
s %) :
\ Y, _
{ab} R {a. b} {a}

IS = 0a? Yes

St EO(anb)? Yes

IS = O(an b)? No, because s3 [~ O(aA b)
ISE=0O(-b=0O(an —b))? Yes

vy v v ¥

Dr. Michaela Klauck | 03 .07.2025
50 BOSCH

A First Glimps on Model Checking
Example on a Transition System

FL
s %) :
\ Y, _
{ab} R {a. b} {a}

IS = 0a? Yes

St EO(anb)? Yes

IS = O(an b)? No, because s3 [~ O(aA b)
ISE=0O(-b=0O(an —b))? Yes

ISE bU(an—-b)?

Yy v v v ¥

Dr. Michaela Klauck | 03 .07.2025
51 BOSCH

A First Glimps on Model Checking
Example on a Transition System

FL
s %) :
\ Y, _
{ab} R {a. b} {a}

IS = 0a? Yes

St EO(anb)? Yes

IS = O(an b)? No, because s3 [~ O(aA b)
ISE=0O(-b=0O(an —b))? Yes

IS bU(an —-b)? No, because (s1s2)“ [~ bU (a A —b)

Yy v v v ¥

Dr. Michaela Klauck | 03 .07.2025
52 BOSCH

Example: Markov Decision Process
Beverage Vending Machine with Nondeterministic Actions

« Immediately after selecting we have to pay:

select =& opayed @
« The machine will always be back in numcC > 0 \@ Sop NUMS >0
(o)

1 int. C ~SpH,..
operation at some point: o Otte

(] (broken = ! broken)
 If we have enough money and there is

coke in the machine it will be delivered at .
some point: insert >= cost:
P . numC --

(insert >= cost & numC >0) =& < delivered

broken = false

insert >= cost:
- humS --

deliver
money += insert

deliver
Variables: . broken = true
S int C:int money += Insert
numsS: in numcC: in : i
- . delivered = true delivered
money, cost: float broken, delivered: bool
Dr. Michaela Klauck | 03.07.2025 BOSCH

Example: Markov Decision Process
Beverage Vending Machine with Nondeterministic & Probabilistic Actions

* Probability to have to select twice in
the beginning:
P(OO select)

* Probability that if we have enough
money and there is coke in the

machine it will be delivered at some
point after we selected it:

P((insert >= cost & numC >0)
= (delivered)

Variables:
numsS: int numcC: int
money, cost: float broken, delivered: bool

Dr. Michaela Klauck | 03.07.2025

broken = false

select
numC >0 0“‘6

o ps

0.2
pay
0.8

insert >= cost:

insert >= cost:
numC -- v__numsS --

deliver
. money += insert
deliver
broken = true

money += insert
delivered = true

BOSCH

How to Model Check Timing Issues?
Discrete vs. Continuous Time

« Correctness depends not only on logical result of computation
but also on time when results are produced

* Robot controllers, landing gear controller of airplane,
railway crossing, communication protocols

* Discrete time:

Discrete steps, natural time values, tick actions

Minimal delay is a priori fixed and difficult to determine in practice
Properties: traditional temporal logic with next operator as time measure
Standard model checking algorithms suffice

Often sufficient in synchronous systems, e.g., hardware

Dr. Michaela Klauck | 03.07.2025

BOSCH

How to Model Check Timing Issues?
Discrete vs. Continuous Time

« Continuous time:
« State changes can happen at any point in time
* Needed for asynchronous systems, e.g., distributed systems

* Properties: very expressive in general, therefore restrict expressivity:
» Only reference to natural time units: Timed CTL
« Model timed systems symbolically rather than explicitly: Timed automata (TA)
« Consider finite quotient of infinite state space (equivalence depending on property + TA): Region automata

Dr. Michaela Klauck | 03.07.2025
BOSCH

Timed Automata
How to Handle Time?

* Clocks x, y: real

« Advance implicitly at same speed

» Clock constraints: guards of actions

* Guards indicate when edge may be taken

» Clocks can be reset to initial value 0
« Location invariants: time that may be spent in location
« Before location invariant gets invalid, edge must be taken

* Problems:
« Time convergence: time advances only up to certain value (convergent sum)
« Timelocks: no behavior where time can progress ad infinitum in a state
« Zenoness: infinite number of actions in finite time

Dr. Michaela Klauck | 03.07.2025
BOSCH

Timed Automata

Example
x=10 x=15
o b
Dr. Michaela Klauck | 03.07.2025 BOSCH

Model Checking

Probabilistic Full State Space MC with Value lteration,
Statistical Model Checking (SMC)

BOSCH

Markov Decision Processes (MDPs)
Recap

Dr. Michaela Klauck | 03.07.2025

Probabilistic Reachability:

Prax(o Goal)

Interface:

- So

- actions (s)
- sample (s, a)
- distr (s, a)
- goal (s)

BOSCH

Model Checking

Introduction
:5
=X
Yo s
Probabilistic Model Checking (PMC) Statistical Model Checking (SMC)

« Always depending on strategy:
« Lightweight Scheduler
Sampling (LSS)
« Deep Learning (DSMC)
« Giving results with statistical
guarantees

Dr. Michaela Klauck | 03.07.2025
BOSCH

« Automated technique for formally
verifying quantitative properties of
stochastic and non-deterministic systems

« Giving results with predefined error
ranges

Probabilistic Model Checking
Introduction

Property

% % e-approximate

Dr. Michaela Klauck | 03 .07.2025 BOSCH

Probabilistic Model Checking
Value lteration

Pnax(¢ Goal)

(o)
_/

o
ORRORROR

Bellman function: v;1,(s) = maxgeq(5)ZsT(s,a,5") - v;(s)
Dr. Michaela Klauck | 03 .07.2025 BOSCH

Probabilistic Model Checking
Value lteration

Pnax(¢ Goal)

0.7

0.3

5 &

»
L

Bellman function: v;1,(s) = maxgeq(5)ZsT(s,a,5") - v;(s)
Dr. Michaela Klauck | 03 .07.2025 BOSCH

Probabilistic Model Checking
Value lteration

Pnax (0 Goal)
0.7
0
N0
ORNO
_/

Bellman function: v;1,(s) = maxgeq(5)ZsT(s,a,5") - v;(s)
Dr. Michaela Klauck | 03 .07.2025 BOSCH

»
L

O

Probabilistic Model Checking
Value lteration

Pnax(¢ Goal)

I
_/

0.7
0.7

O

Bellman function: v;1,(s) = maxgeq(5)ZsT(s,a,5") - v;(s)
Dr. Michaela Klauck | 03 .07.2025 BOSCH

0.3

& <§i>

»
L

o

Probabilistic Model Checking
Value lteration

Pnax(¢ Goal)

I
_/

0.7

0.3

& <§i>

o
o °

Bellman function: v;1,(s) = maxgeq(5)ZsT(s,a,5") - v;(s)
Dr. Michaela Klauck | 03 .07.2025 BOSCH

o

Probabilistic Model Checking
Value lteration

Pnax(¢ Goal)

o éi

O _
°

D
_/

Dr. Michaela Klauck | 03 .07.2025 BOSCH

Probabilistic Model Checking
Value lteration

Emin(o Goal)

.0
o0 e

Bellman function: v;1,(s) = mingeq5)ZsT(s,a,5") - (v;(s") + R(s,a,s")
Dr. Michaela Klauck | 03 .07.2025 BOSCH

Probabilistic Model Checking
Value lteration

Emin(o Goal)

.0
o 0e

Bellman function: v;1,(s) = mingeq5)ZsT(s,a,5") - (v;(s") + R(s,a,s")
Dr. Michaela Klauck | 03 .07.2025 BOSCH

Probabilistic Model Checking
Value lteration

Emin(o Goal)

.0
0 0e

Bellman function: v;1,(s) = mingeq5)ZsT(s,a,5") - (v;(s") + R(s,a,s")
Dr. Michaela Klauck | 03 .07.2025 BOSCH

Probabilistic Model Checking
Value lteration

Emin(o Goal)

7.9
O 0 e

Bellman function: v;,1(s) = mingeq(5)ZsT(s,a,s") - (v;(s") + R(s,a,s")
Dr. Michaela Klauck | 03 .07.2025 BOSCH

Probabilistic Model Checking
Value lteration

Emin(o Goal)

7.9
Do 0 e

Bellman function: v;1,(s) = mingeq5)ZsT(s,a,5") - (v;(s") + R(s,a,s")
Dr. Michaela Klauck | 03 .07.2025 BOSCH

Probabilistic Model Checking
Value lteration

Emin(o Goal)

7.0
Do 0 e

Bellman function: v;,1(s) = mingeq(5)ZsT(s,a,s") - (v;(s") + R(s,a,s")
Dr. Michaela Klauck | 03 .07.2025 BOSCH

Probabilistic Model Checking
State Space Explosion Problem

75 Dr. Michaela Klauck | 03.07.2025
© Robert Bosch GmbH 2023. Alle Rechte vorbehalten, auch bzgl. jeder Verfligung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie fiir den Fall von Schutzrechtsanmeldungen. @ BOSCH

Statistical Model Checking

Introduction

Probabilistic Model Checking
Introduction

Property

Easy to
handle
MDPs

€-approximate

% %

Dr. Michaela Klauck | 03.07.2025

Property

Yo &

Strategy o to resolve
nondeterminism

At first, only
made for
DTMCs

Estimator with statistical guarantees:
Confindence Intervall:
P(|smc, — optiy| > €) <6

BOSCH

Statistical Model Checking
Monte Carlo Simulation

schedule(s) o

Dr. Michaela Klauck | 03 .07.2025 BOSCH

Statistical Model Checking
Schedulers

o schedule (s)

BOSCH

Statistical Model Checking
Schedulers

i

@

optimal, safe, performant strategies

BOSCH

Statistical Model Checking
Motivation

-
2

7

XX

BOSCH

Statistical Model Checking
How to Find Good Schedulers?

 Lightweight scheduler sampling (LSS) lifts SMC from DTMCs to MDPs

* Picks set of strategies & applies SMC-based heuristic to find best strategy A
T, 10 ﬁ_j L ®
What about rare events?]
Source: Ar! efﬁcient statistical model checker for i
« Importance splitting & importance sampling bedro bYAgenio. Amd Harimanms, Sean Sedwards, ° —
STTT 2020. Fig.3 Illustration of RESTART [9]

A

A
rare

Ty -10-

b}
T
0 - >
time time
Fig.5 Illustration of fixed success [9] Fig.4 Ilustration of fixed effort [9]
Dr. Michaela Klauck | 03.07.2025 BOSCH

Other Model Checking Methods
Overview

» Symbolic model checking
« States and transition relations represented as logical formulas, e.g., in BDDs

« Set of states and transition relations:
Boolean formulas over vector of current state variables and next state variables

* Model checking: mathematical reasoning over those formulas
« Compute set of reachable states in i steps, search for fixpoint

« LTL model checking
 Build product of TS and Buchi automaton of negated LTL formula to verify
« Check if product automaton satisfies persistance property

Dr. Michaela Klauck | 03.07.2025

BOSCH

Modeling Formats &
Languages

JANI,
SCXML

BOSCH

JANI €@

Model Checking Format

« Model exchange format for networks of quantitative automata
* Based on JSON

» Properties: temporal formulas (CTL)

» Foster verification tool interoperation & comparability

« Supported by most state-of-the-art model checkers:
The Modest Toolset, Storm, PRISM (via converter), ...

Specification: https://jani-spec.org/

Benchmark Set:
https://gcomp.org/benchmarks/

Dr. Michaela Klauck | 03.07.2025
BOSCH

https://jani-spec.org/
https://qcomp.org/benchmarks/

JANI

Example
Example: Automaton "auty”:
_)@
0.5
0.5:
res = false N
((coiny + coing) - y = 3) :
85 Dr. Michaela Klauck | 03.07.2025 BOSCH

JANI
Example

N
o
\\‘00 o
N\ N A
e e
o
o \’ K ’(;\SQ \‘)0
e LAY ., \\b 5
3‘0‘\' e —):0'\’ b-\\ ’\
L %
\‘q.a'ﬁ 6‘ . w C S\\\‘\f' W o ,\\\ L) \ W
BTN O L
D (2 W W ‘),0 O » X
% o AN e
w @ W 0 : %% W)
\SQ * 4 \)'0‘ .&3‘
W @‘-"’e' G") ,&’Q <7 p iy
R —\‘O‘A il ,')«0 W B W \S\ 6
v Qe X, W Y =20
.00 3,0 2O¥ 50 z K,\\ S &’(z
’(,“/- \ N A e \ o
e% W & Q ‘).% “'\' \\
L LAY “ 0 R
s ‘f—Q X, \\) ‘»5
v e & \S s N, V2 &'b‘
\\’\' N '):0'\' Q“ w
©, 0% vO¥, v
Y ‘(—y\‘ . i \ W ,(")«
&‘ ’(a\ \
o %
\\’\‘\ 3«%\\ cee \, Wi \\’\ b
A\ L\ NPy
> Q
S “ 27 W \\ » W) \
> R\ R\ ’\) [e) N
) 0 Ly
5 @0\ ’).0 N ,\‘00 '\,‘\\ W N\ ¥ N i
s \\0@ 03 A\ A Gy 00 : O"\ W OQ \
O q@ N gD g >
) o P A N 0 ©
O e A '\'Oo el 3,% W
S\ 2% . - w 49 %% % e A
ol N &\ yerry \/e&
\ ‘&)(J 6\\ . N \ & OQee\\ £ R\Y o
.3 6%6 '(,6 K \ NS Dol 2 \\
- 0’& X, N W ‘»\’G 0\
\ oA G& (% o \ A
N\ ’\‘ XG \ . S\\\ OQ .)(\‘) & c‘O
W *\\ K ’(’\\
AP, ST i,
» LR \ > \\ "
Y ’f, Q Y A\ ’{« \ %\ N
(o N X

86 Dr. Michaela Klauck | 03.07.2025

BOSCH

JANI
Example

" variables ": |
"name":"res",
"type":"bool" , — IOCO
"name":"coinl",

"type": {
"kind":" bounded ",
"base":"int",

"lower—-bound":0, 0.5

"upper-bound":2}}, ...1,

" restrict-initial ": { 0.5:
"exp": {rrop":uf*n’
"laft . {"Op":"ﬁ", res = false N
"left": {...}, ((coiny + coinz) -y = 3)

nright“: {"Op":" — 11’
"left":" coinl ",
"right": 0 }},

Ilriqht": {"Op":"=",

"left": "res",
"right":false}}}, ...

87 Dr. Michaela Klauck | 03.07.2025 BOSCH

JANI
Example

" variables ": |
"name":"res",

"type":"bool" , > IOCO

"name":"coinl",

"type": {

"kind":" bounded ",

"base":"int",

"lower—-bound":0, 0.5

"upper-bound":2}}, ...],

" restrict-initial ": {

"exp": {"op":""",

"left": {"op":""",
"left": {...},
"right": {"op":" =",

"left":" coinl ",
"right": 0 }},
"Iight": {"Op":":",
"left": "res",
"right":false}}}, ...

88 Dr. Michaela Klauck | 03.07.2025

0.5:
res = false N
((coiny 4 coinz) - y = 3) :

BOSCH

JANI
Example

89

Dr. Michaela Klauck | 03.07.2025

"automata": [

"name":" autl ",
"locations": [{

"name":" locO "},

"name":" locl "} 1],
"initial-location":
["lOCO"] ,
"edges": [{
"location":"locO",
" guard ": { "exp":{
"Op" : 'I'!"l'l"

"laeft": {"Op":"=",
"left":"res",
"right":false},

llright": {"Op":":“,

"left" : {"Op" : 'I'I_l_l'l"

"left":"coinl",
"right":"coinZ"}...},
"right":3}}}, ...

—(locy
0.5
0.5:
res = false N
((coiny + coing) - y = 3) :

BOSCH

JANI
Example

90

Dr. Michaela Klauck | 03.07.2025

"automata": [

"name" :" autl ";
"lecations™s [4§

"name":" locO "},

"mame™: " loel "} 1i
Yindtaal—leocation™:s
["lOCO"],
"edges": [{
"leecation " leclO;
"R : { "exp":{
"Op" : "A"’

"left": {"Op":"="’
"1eftt":"reg",
"right":false},

"rig—ht": {"Op":"=",

"left" : {"Op" : "+",

T lefe"s Mesin M.
nEight " :"eain2" .. .
"dab " i3} by 5

—(locy

0.5

y 1C

0.5:
res = false A\
((coiny + coiny) -y = 3) :

rooc
o

BOSCH

JANI
Example

9‘] Dr. Michaela Klauck | 03.07.2025

" destinations ": |

{" probability":"exp":0.5,

"location":"locl",
"assignments": |

{"ref":" res ", "value": true }
1} ...131}0,

" properties ": [
'“name“:"eventually_res",
llexpll:{

"op":"filter",
n fun":llmaxlt’

"values":{

"Op":" Pmax "‘r

Ilexp":{ "Op“:" U u,
"left": true ,
"right":" reg " }}’

"states":"op":"initial" }J...

e kDCb
0.5
0.5:
res = false N
((coiny + coiny) - y = 3) :

BOSCH

JANI
Example

92 Dr. Michaela Klauck | 03.07.2025

" destinations ": |

{" probability":"exp":0.5,

"location":"locl",
"assignments": |

{"ref":" res ", "value": true }
1} .. 1313,
" properties ": [
"name":"eventually_res",

"exp" :{
"op":"filter",
n fun" : "maX"'
"values":{

"Op":" Pmax u’

"exp":{ "Op":" U n’
"left": true ,
“right":" reg " }}r

"states":"op":"initial" }]..

— IOCO

0.5

0.5:
res = false N

((coiny + coing) - y = 3) :

BOSCH

SCXML
Starting from a Running Robotic System

SCXML: State Chart eXtensible Markup Language

Event-based state machine language

Genericizes state diagram notations used in other XML contexts
Large tool support: SCXML to C++ compiler, Java & Python libraries to parse & execute SCXML

programs, ...

Compatible with other XML specifications already available for robotic systems

Dr. Michaela Klauck | 03.07.2025

Standard: https://www.w3.org/TR/scxml/
Tutorial: https://alexzhornyak.github.io/SCXML-tutorial/

BOSCH

https://www.w3.org/TR/scxml/
https://alexzhornyak.github.io/SCXML-tutorial/

SCXML
Example

<?xml wversion="1.0" encoding="UTF-8"2>
<scxml
initial="use_battery"
version="1.0"
name="BatteryDrainer"
model src=""
xmlns="http://www.w3.0rg/2005/07/scxml">

<datamodel>
<data id="battery percent" expr="100" />
</datamodel>
<!—— <ros topic subscriber topic="charge" type="std msgs/Empty" /> —->

<ros_topic publisher topic="level" type="stq_msgsf15t32" />
<ros_time rate rate hz="1" name="my_ timer" />

<state id="use_battery">
<onentrys
<ros_publish topic="level">
<field name="data" expr="battery percent" />
</ros_publish>
</onentry>
<ros rate callback name="my_ timer" target="use battery" cond="battery percent > 0">
<assign location="battery percent" expr="battery percent - 1" />
</ros rate callback>
<!-- <ros_callback topic="charge" target="use battery">
<assign location="battery percent" expr="100" />
</ros callback> --—>
</state>»
<fscxmlj

94 Dr. Michaela Klauck | 03.07.2025

BOSCH

SCXML
Example

<?xml wversion="1.0" encoding="UTF-8"2>
<scxml
initial="check_ battery"
version="1.0"
name="BatteryManager"
model src=""
smlns="http://www.w3.0xrg/2005/07/scxml">

<datamodel>
<data id="battery_ alarm" expr="false" />
</datamodel>

<ros_topic_ subscriber topic="level" type="std_msgs/Int32" />
<!-- <ros topic publisher topic="alarm" type="std msgs/Bool" /> —->

<state id="check battery">
<ros callback topic="level" target="check battery">
<assign location="battery alarm" expr="_msg.data < 30" />
</ros_callback>
<!-- <onentry>
<ros_publish topic="alarm">
<field name="data" expr="battery alarm" />
</ros publish>
</onentry> —->
</state>
<fscxmlﬂ

95 Dr. Michaela Klauck | 03.07.2025

BOSCH

Real World Application Example:

Model Checking in Industry

BOSCH

Towards Safe Autonomus Driving:
Model Checking a Behavior Planner during Development

Konig L., Heinzemann C., Griggio A., Klauck M., Cimatti A., Henze
F., Tonetta S., Kuperkoch S., Fassbender D., & Hanselmann M.
Towards safe Autonomous Driving: Model Checking a Behavior

Planner during Development. In: Tools and Algorithms for the
Construction and Analysis of Systems. TACAS 2024.

S Formal
++ Lode model of
g nderying
logic Model
- ode -
Checking

Environment

X <

model

97 Dr. Michaela Klauck | 03.07.2025

Model Checking a Behavior Planner during Development
Counter Examples — Double Merge

98 Dr. Michaela Klauck | 03.07.2025
© Robert Bosch GmbH 2023 . Alle Rechte vorbehalten , auch bzgl . jeder Verfligung, Verwertung , Reproduktion, Bearbe itung, Weitergabe sowie fiir den Fall von Schutzrechtsanmeldungen. @ BOSCH

Model Checking a Behavior Planner during Development
Results

« Deployed in series development
« Found relevant issues in intermediate versions of planner at development time

« Success factors:
« automatically extracted formal model from production code

« seamless integration into development environment

9 9 Dr. Michaela Klauck | 03.07.2025

Lessons Learned
Findings from 2 Projects briging FM to Autonomous Systems Engineering

« Formal specifications require support for engineers:
« modeling languages expressive enough for industrial settings
« logics with efficient tooling incl. design & debugging support

» Support for model extraction, generation, writing
to bridge gap to running industrial systems
* Model validation
« Tightly integrated tooling in development environments
* Low inhibition barrier needed

Dr. Michaela Klauck | 03.07.2025 BOSCH

CONVINCE..

CONtext-aware Verifiable and
adaptive dyNamiC deEliberation

BOSCH

Use Cases CONVINCE-.
Dynamic Deliberation with Behavior Trees

Excerpt of edge
cleaning BT

(blurred for confidentiality reasons)

1 02 Dr. Michaela Klauck | 03.07.2025 BOSCH

Vision
Robust Autonomous Robots

1. Robustness in system architecture & environment interaction
Management ul, app, ...

2. Adaptive, cognitive deliberation systems . : ISR
p g y 4| Deliberation task control, b

« detecting & coping with unexpected situations behaviors, ...

Object recognition,
human tracking,
. SLAM,
Skills motion planning and control,
grasping,
navigation, ...

« providing contingency plans

Robot Operating System

Operating System(s)

1 03 Dr. Michaela Klauck | 03.07.2025 BOSCH

Vision
Robust Autonomous Robots

1. Robustness in system architecture & environment interaction

2. Adaptive, cognitive deliberation systems
« detecting & coping with unexpected situations

CONVINCE GOALS
« providing contingency plans

3. Formal methods to ensure: 3 g g é §
» robust & correct execution of behaviors {fg’ s % § =

. o £ W& S g\ s >

« atdesign & run time §§ % E g 2
+ Statistical Model Checking on entire system v oy AT =

UCA: Vacuum Cleaner

4. Open-source software toolchain for behavior developers UC2: Assembly Robot

Bring together existing model checking & robotic tools UC3: Robotic Museum Guide
Reduce software development and maintenance efforts

‘I 04 Dr. Michaela Klauck | 03.07.2025

BOSCH

Toolbox Components
Verification, Monitoring, Planning, Situation Understanding

convince-project.github.io, B % ¥ Q Suchen

/ CONVINCE Toolchain Overview View page source

CONVINCE..
: CONVINCE Toolchain Overview

Search docs
Street, Warsame, Mansouri, Klauck, §) Welcome to the CONVINCE toolchain documentation. The goal of the CONVINCE project s to
HenkeL Lampacrescia, Pa|mas, Tutorials provide an open source toolchain to improve robust robot deliberation with the help of planning,
Lange Ghiorzi, Tacchella, Azrou, learning, and model checking techniques.
Lallement, Morelli, Chen, Wallis,
Bernagozzi, Rosa, Randazzo,
Faraci, Natale.
Towards a Verifiable Toolchain for
Robotics.
Proceedings of the AAAI
Symposium Series 2024.

This is the entry-point for the CONVINCE toolchain documentation. It provides an overview of all
the individual components which are part of the large toolchain. Those components can be used
standalone and also linked together as required for individual use cases.

Best Paper Award

i \
\
\
\
\,
\
\
\ 7
\
\,
\, o
e Legend
S LN M (e it pese Hew
...... > flioetind'y

' https://convince-project.github.io/overview/
r. Michaela Klauck | 03.07. BOSCH

https://convince-project.github.io/overview/

Model Checking Tooling

Overview

Properties Model
Checker

\ 4

.

Dr. Michaela Klauck | 03.07.2025
BOSCH

Model Checking Tooling

Overview

Format Name

Tool Name
Available open source
in the CONVINCE
GitHub organization

SCXML
or JANI

Dr. Michaela Klauck | 03.07.2025

BT.cpp
XML

BT-Model

(Auton

Properties

\ 4

HL-SCXML

Skill Model

HL-SCXML

Environment

Model

AS2FM
ous Systems to Formal Models)

Plain JANI

model

Model
Checker

.

SMC Storm

BOSCH

Model Checking Tooling
Overview

Real System

Model Based Verification

High-level (System) XML

2
c
@
=
o
o
£
o
o
£
(]
2
n

BT XML

BT Plugins
HL-SCXML

Nodes
HL-SCXML

Environment
Model

AS2FM

) __
Deliberation
é % Layer
o
8 E Skill Layer
—
9; H9 Functional
L
s Q ayer
O ©
9 © Real
(al Environment
Q
o
=
T
X
L

Dr. Michaela Klauck | 03.07.2025

BT in BT.cpp XML
BT Plugins

ROS 2 Nodes
Skills

Environment XML

Refine system & system
model based on result

- Destination always
reached within time limit?

- Battery never depleted

- Docking always
successfull?

No + counter
example execution
trace

Yes

No, only in 98.5% +
counter examples

BOSCH

AS2FM

Autonomous Systems to Formal Models

BOSCH

O D convince-project.github.io

Autonomous Systems to Formal Models (AS2FM) View page source = O P

CONV|NCE " <> Code (© lssues 18 11 Pullrequests 2 U Discussions
Autonomous Systems to Formal Models (AS2FM)

» « AS2FM Pubic

(\ ch docs)

Installation

This is the documentation of the AS2FM tools from the CONVINCE project’s toolchain. Besides
illustrative tutorials on how to use the provided scripts, their APl is documented to foster

contributions from users outside of the core project’s team.
Tutorials

How To Guides Overview

SCXML to JANI Conversion

API The purpose of the provided components is to convert all specifications of components of the
robotic system under investigation into a format which can be given as input to model checkers for

Contacts e 3 S
verifying the robustness of the system functionalities.

As a first toolchain component, we provide a Python script to convert models describing the system
and its environment together, given in the CONVINCE robotics JANI flavor as specified in the data
model repository, into plain JANI, accepted as input by model checkers. A tutorial on how to use
the conversion can be found in the tutorial section.

The second part of the provided toolchain components centers around system specifications given
in SCXML and how to convert them into a plain JANI file for model checking. We expect that a full
robotic system and the information needed for model checking consists of?:

« one or multiple ROS nodes in SCXML,
« the environment model in SCXML,

htt s://co Vince- ro.ect. o the Behavior Tree in XML,

. . ¢ the plugins of the Behavior Tree leaf nodes in SCXML,
github.io/AS2FM/ Pe

the property to check in temporal logic, currently given in JANI, later support for XML will be
added.

110 BOSCH

We offer a push-button solution for the full bundle conversion of all of those input files into one

L

https://convince-project.github.io/AS2FM/
https://convince-project.github.io/AS2FM/

AS2FM
Docking Example: Intro

Goal: Verify that docking procedure works

Ingredients:

« Complete model's components:
e Behavior Tree definition (XML)
« Behavior Tree plugins’ definition (HL-SCXML)
« ROS 2 Communication (HL-SCXML)
+ Model of the robot’s environment (HL-SCXML)

= Property: Check if tree_success message is
published (i.e., robot starts charging)

Dr. Michaela Klauck | 03.07.2025

AS2FM

Docking Example: Robot High-Level SCXML Model

‘] 1 2 Dr. Michaela Klauck | 03.07.2025

<?xml version="1.0" encoding="UTF-8"7>

<scxml initial="running" name="RobotModel" ...>
<!-- Internal Variables -->
<datamodel>

</da

<!--

<ros|
<ros|

<ros

<ros
<ros_service server name="reset_bump" service_name="/reset_bump" type="std_srvs/Empty" />

<data id="dist to do
tamodel>

Declaration of ROS

ck" expr="20" type="intl6" />

interfaces -->

topic publisher nam
topic publisher nam
topic publisher nam

e="bumper" togjic="/bumper" type="std msgs/Empty" />
e="dock dist" |topic="/dist to dock" type="std msgs/Intl6" />
e="charging" {Jopic="/battery charging" type="std msgs/Bool" />

topic subscriber na

me="cmd" topic="/cmd vel" type="std msgs/Intl6" />

<ros|time rate rate hz="5"| name="status update" />

<sta

</st
</scxml>

te id="running">

<!-- Timer-based callback updating the robot's state based on the last received cmd vel -->

<ros_rate callback n

<!-- Publish the
<ros_topic publi

<field name=
</ros topic publ

</ros_rate callback>
<!-- Store the cmd v
<ros topic callback

<assign location
</ros_topic callback
<!-- Handle the rese
<ros_service handle |

<assign location

<ros service sen
</ros service handle
ate>

ame="status_update" target="running">

robot pose -->
sh name="dock dist">

"data" expr="dist_to_dock" />
ish>

el received by the controller -->
name="cmd" target="running">

="last cmd" expr=" msg.data"/>

>

t bumper request -->

Fequest name="reset bump" target="running">
E"has bumped" expr="false" />

i response name="reset bump" />

Tequests

BOSCH

AS2FM
Docking Example: Behavior Tree Plugins

<?xml version="1.0" encoding="UTF-8"7>
<scxml
initial="initial"
version="1.0"
name="IsCharging"
model src=""
xmlns="http://www.w3.0rg/2005/07/scxml">

<datamodel>
<data idH"last msg" expr="false" type="bool'l />
</datamodel>

<ros_topic subscriber name="charging”|topic="/battery7charging"|typez"stdimsgs/Bool" />

<state id="initial">
<ros_topic_callback name="charging" target="initial">
<assign location="last msg" expr=" msg.data" />
</ros_topic callback>
<bt tick target="initial">
<if cond="last msg">

<bt return status| status="SUCCESS" /%
<else />
<bt return status status="FAILURE" /%
</if>
</bt tick>
</state>
</scxml>

1 1 3 Dr. Michaela Klauck | 03.07.2025 BOSCH

SMC Storm

BOSCH

SMC Storm
Overview
Why settling on

/I Storm 7.

Mature open-source project
Built-in support for JANI models
Implemented in C++

Very good performance in QComp

= O moves-rwth / storm

<> Code (© Issues 91 11 Pullrequests 12 () Actic

2 storm Public

Dr. Michaela Klauck | 03.07.2025

CONVINCE..

(Sear(h docs)

|
3 Installation Guide

How to install smc_storm
Verify the installation works
Tutorials

API

https://convince-project.

github.io/smc_storm/

= O convince-project / smc_storm

<> Code (Issues 1 11 Pullrequests () Actions

« » SMC_storm Public

/ Installation Guide View page source

Installation Guide

How to install smc_storm
Use deployed binaries
We provide pre-built binaries that can be used on Ubuntu. They can be found at the Releases page.

To install them on your machine, extract smc_storm_executable.tar.gz and follow these steps:

cd smc_storm_executable # This is the extracted archive
install.sh --install-dependencies # This flag will install all packages required by smc_storm and its dey
export PATH-$PATH: $PUD/bin # This way, smc_storm can be called from anywhere

smc_storm --help # Make sure the binary runs

Build from source

Install STORM

smc_storm needs STORM to be built on the local machine. To achieve that, follow the official
documentation.

In order to get the latest features, we recommend using the master branch, which provides support
for the trigonometric operators that are not supported yet in the stable branch.

We used the following command to build STORM:

export STORM_DIR=<path-to-storm-repo>
cmake -DSTORM_USE_SPOT_SHIPPED=ON $STORM_DIR 8% make -j1@

BOSCH

SMC Storm
Typical usage

Input:

> smc_storm --model ucl docking.jani --properties-names tree success

--confidence 0.95 --epsilon 0.01 --n-threads 5 --show-statistics

Output:

Welcome to SMC Storm
Checking model: ucl docking.jani
Property "tree success": Pmin=? [F (topic tree succeeded msg.valid)];

SMC Results
. of times target reached:

N. of times no termination:
Tot. n. of tries (samples):
Estimated success prob.:
Min trace length:

Max trace length:

Dr. Michaela Klauck | 03.07.2025
BOSCH

SMC Storm on Docking Example

> smc_storm --model main with problem.jani
Welcome to SMC Storm
Checking model: main with problem.jani
Property "tree success": Pmin=? [F (topic tree succeeded msg.valid)];

SMC Results
. of times target reached:
N. of times no termination:
Tot. n. of tries (samples):
Estimated success prob.:
Min trace length:
Max trace length:

--properties-names tree success --n-threads 5

--show-statistics

Bcmd_vel_topic
Btopic_dist_to_dock_msg.ros_fields_ data
BRobotModel_docked_time

|

L []| | | a1

[L]

T
1000

T
2000

T
3000

T
4000

T
5000

T
6000

BOSCH

SMC Storm on Docking Example

> smc_storm --model ucl docking.jani --properties-names tree success --confidence 0.95 --epsilon 0.01 --n-threads 5 --show-statistics
Welcome to SMC Storm

Checking model: ucl docking.jani

Property "tree success": Pmin=? [F (topic tree succeeded msg.valid)];

SMC Results
. of times target reached:

N. of times no termination:
Tot. n. of tries (samples):
Estimated success prob.:
Min trace length:

Max trace length:

Mtopic_dist_to_dock_msg.ros_fields_ data
Mtopic_cmd_vel
RobotModel_docked_time

0 500 1000 1500 2000

SMC Storm
Performance Evaluation

Evaluation of Probability Properties

x8 x14

l‘ | 1 | | | | |
B smc_storm modes WM PRISM SMC
— - L -+ - - + + 4

hm_targ
lead2 e
leadl_e
egl_|_ub
egl_|_ua
nand3_r
nand2_r
nandl_r 4
egl_s_ub
egl s ua
crowds_p

brp_p4

brp_p2

brp_pl

i
1
1
1
1
I
T
—+
1
}
1
1
I
|

xb x'3 x'6 xb xi2 xi5 xi8 x2'1 x2'4 x2|7 x3|.0 X33
Relative time

‘] 1 9 Dr. Michaela Klauck | 03.07.2025

Lampacrescia M., Klauck M., & Palmas M.
Towards Verifying Robotic Systems using
Statistical Model Checking in STORM.

In: Bridging the Gap Between Al and Reality.
AlSoLA 2024,

Evaluation of Reward Properties

x29 x144
c_storm ®m® modes W PRISM SMC

N S
egl | mb

egl | ma

1
m
1
1 |
1
1
1
1
T
1
1
-

1
1
1
1
1
1
1
1
0sC_p :

osc t

lead2 _t
leadl t
egl s mb

egl s ma

x0 x22 x44 x66 x88 x110x132x154x176x198x220x242
Relative time

BOSCH

Model Checker Tool Demo

The Modest Toolset,

Storm,
SMC Storm

BOSCH

The MOdeSt TOOISet . https://www.modestchecker.net/

The Most Versatile Probab. Model Checker wrt. Analysis Backends & Supported Model Types

.The Modest Toolset Download Publications Examples Documentation Contactus

Home

Quantitative Modelling and Verification

The Modest Toolset supports the modelling and analysis of hybrid, real-time, distributed and stochastic systems. A modular
framework centered around the stochastic hybrid automata formalism [HHHK13] and supporting the JANI specification, it provides
a variety of input languages and analysis backends.

Models
At the core of the Modest Toolset is the model of networks of stochastic hybrid automata (SHA), which P
combine nondeterministic choices, continuous system dynamics, and timing, ST'A
and real-time behaviour, including nondeterministic delays. A wide range of well-known and extensively |
studied formalisms in modelling and verification can be seen as special cases of SHA: MA PTA
« STA (stochastic timed automata), the original semantic foundation of Modest [BDHKO06], are SHA with-
out complex continuous behaviour (i.e. without variables whose evolution over time is governed by =~ M€ oA . PA/MDP
differential equations or inclusions, except for clock variables). ‘
DTMC

PTA (probabilistic timed automata) are obtained from STA by restricting stochastic decisions to choices
based on finite-support probability distributions (such as the discrete uniform or the Bernoulli distribu-
tion).

TA (timed automata) are nonprobabilistic PTA. Delays and discrete choices can still be nondeterministic, but not stochastic. TA
are widely used to model real-time systems and requirements.

PA/MDP (probabilistic automata/Markov decision processes), on the other hand, can be seen as PTA without the notion of
time, i.e. without clock variables or delays. PA theory focuses on compositionality and simulation relations between models,
while MDP are usually considered with costs or rewards, but both are essentially the same model.

LTS (labelled transition systems), alternatively Kripke structures or finite automata, are the most basic, fundamental model for
verification. Allowing nondeterministic choices, they are supported by a wide range of model-checking tools of impressive scal-
ability.

DTMC (discrete-time Markov chains) are the basic discrete probabilistic model. As a model without nondeterminism, they are
not only amenable to a wide range of numerical analysis approaches, but also ideally suited for simulation.

CTMC, IMC and MA (continuous-time Markov chains, interactive Markov chains and Markov automata) form the family of sto-
chastic models based on the notion of exponentially distributed delays, which can be represented in STA via a combination of
sampling from the exponential distribution and subsequently waiting the sampled amount of time using a dedicated clock vari-
able.

‘] 2‘] Dr. Michaela Klauck | 03.07.2025

Languages

The Modest Toolset currently supports the following input languages:

¢ Modest: a high-level compositional modelling language for stochastic hybrid systems
[HHHK13].

» JANI: a model exchange format for networks of quantitative automata [BDHHJT17], part of the
JANI specification.

Due to the toolset's modular nature, new input languages can easily be added by implementing
a small set of interfaces and providing a semantics in terms of SHA.

Tools

The Modest Toolset comprises the following tools:
« mcsta is a disk-based explicit-state model checker for STA, PTA and MDP.

« moconv converts models between the Toolset's input languages, in particular from Modest to
jani-model and back.

« modes [BDHS18] is a statistical model checker for SHA, STA, PTA and MDP.

* modysh [MKHH21] is a probabilistic model checker for MDP based on dynamic search and
heuristic planning techniques.

» mosta visualises the SHA semantics of a model by generating a graphical representation of
the automata.

» prohver [HHHK13] is a safety model checker for SHA.

Download

The Modest Toolset can be downloaded for evaluation purposes.
We provide binaries for Windows, Linux and Mac OS. (System requirements)

BOSCH

https://www.modestchecker.net/

StOI’m https://www.stormchecker.org

The Leading State-of-the-Art Probabilistic Model Checker Il

Engines:

Description

Storm is a tool for the analysis of systems
involving random or probabilistic phenomena.
Given an input model and a quantitative
specification, it can determine whether the input
model conforms to the specification. It has been
designed with performance and modularity in

mind. Getting started

Input languages

Storm supports several types of input:
¢ PRISM
e JANI
¢ GS5PNs
e DFTs
« cpGCL
o explicit

‘] 22 Dr. Michaela Klauck | 03.07.2025

Modeling formalisms

Stormis built around discrete- and continuous-
time Markov models:

* Discrete-time Markov Chains

* Markov Decision Processes

+ Continuous-time Markov Chains

¢ Markov Automata

* Parametric Markov Models

+ Partially Observable Markov Models

Properties

Supported model checking queries include
+ Reachability and Reach-Avoid Probabilities
e« PCTL, CSL, and LTL Specifications
* Expected Accumulated Rewards
« Long-run Average Rewards
« Conditional Probabilities
* Multi-objective Analysis

Sparse (explicit state space representation):
* Main engine

« Builds representation on explicit data structures (bit
vectors, sparse matrices)

* Fast numerical computations
Decision Diagrams (symbolic):
« BDDs (state sets) + MTBDDs (matrices, vectors)
* Fast + memory efficient model building
Hybrid
« DDs for qualitative representations
« Explicit for numerical computations
Exploration:
* Use ML to explore only parts contributing most to result
Abstraction-Refinement:
» Infinite or very large state spaces

BOSCH

https://www.stormchecker.org/

Model Checker Tool Demo
Simulating a Dice with a Fair Coin

Dr. Michaela Klauck | 03.07.2025
123 BOSCH

Hands-on:
Modeling & Model Checking
of Robot Behavior

BOSCH

AS2FM & SMC Storm Tutorial
Verifying the Behavior of a Robot in a Fetch & Carry Task

https://convince-project.github.io/AS2FM/tutorials.html

Use AS2FM to convert an autonomous robotic system into a formal MDP model compatible with
existing model checker tools (SCXML to JANI translation of the model)

Use SMC Storm to model check a linear temporal logic (LTL) property expressing that the robot is
reliably fetching an item and carrying it to the expected place
Task:

— Robot should drive to the pantry where food is stored,
— Pick up snacks,
— Drive to the table and place the snacks there.

Extend with probabilistic behavior
Adapt BT to handle probabilistic failures

Dr. Michaela Klauck | 03.07.2025

BOSCH

https://convince-project.github.io/AS2FM/tutorials.html

AS2FM & SMC Storm Tutorial
Feedback Questionnaire

https://forms.gle/wtcQUPFdijFPhqcH7

i 5[]

BOSCH

https://forms.gle/wtcQUPFdijFPhqcH7

Questions?

Thank you very much for participating in this great
summer school!

Contact: Dr. Michaela Klauck,
michaela.klauck@de.bosch.com

BOSCH

	Folie 1: Verification and Validation (V&V) of Autonomous Robots
	Folie 2: Motivation
	Folie 3: Motivation
	Folie 4: Vacuum Cleaner Use Case
	Folie 5: Defining the System‘s Behavior
	Folie 6: Dynamic Deliberation with Behavior Trees
	Folie 7: Motivation
	Folie 8: Cleaning Coverage, Long-term Cleaning Task Completion, Obstacle Clearance
	Folie 9: Motivation
	Folie 10: Verification, Monitoring, Planning, Situation Understanding
	Folie 11: Vacuum Cleaning Robot & Autonomous Assembly Robot
	Folie 12: Overview
	Folie 13: How to Formally Verify Robotic Systems with Model Checking?
	Folie 14: Theoretical Foundations
	Folie 15: Formal Models
	Folie 16: A Long Journey in the Footsteps of Famous Personalities
	Folie 17: Overview
	Folie 18: System Types  Model Types
	Folie 19: Transition Systems
	Folie 20: Transition Systems
	Folie 21: Beverage Vending Machine with Nondeterminism
	Folie 22: How to use it?
	Folie 23: Beverage Vending Machine with Nondeterminism
	Folie 24: Markov Decision Processes
	Folie 25: Beverage Vending Machine with Nondeterministic & Probabilistic Actions
	Folie 26: Beverage Vending Machine with Nondeterministic & Probabilistic Actions
	Folie 27: Systems with Multiple Processes
	Folie 28: Problems to Avoid
	Folie 29: Problems to Avoid
	Folie 30: Problems to Avoid
	Folie 31: Problems to Avoid
	Folie 32: Problems to Avoid
	Folie 33: Problems to Avoid
	Folie 34: Composition by Handshaking
	Folie 35: Properties
	Folie 36: Linear-Time Temporal Logic (Pnueli 1977)
	Folie 37: Linear-Time Temporal Logic – Derived Operators
	Folie 38: Example: Traffic Light
	Folie 39: Fairness Properties
	Folie 40: Safety & Liveness Properties
	Folie 41: Model Checking
	Folie 42: Example on a Transition System
	Folie 43: Example on a Transition System
	Folie 44: Example on a Transition System
	Folie 45: Example on a Transition System
	Folie 46: Example on a Transition System
	Folie 47: Example on a Transition System
	Folie 48: Example on a Transition System
	Folie 49: Example on a Transition System
	Folie 50: Example on a Transition System
	Folie 51: Example on a Transition System
	Folie 52: Example on a Transition System
	Folie 53: Beverage Vending Machine with Nondeterministic Actions
	Folie 54: Beverage Vending Machine with Nondeterministic & Probabilistic Actions
	Folie 55: Discrete vs. Continuous Time
	Folie 56: Discrete vs. Continuous Time
	Folie 57: How to Handle Time?
	Folie 58: Example
	Folie 59: Model Checking
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82: Overview
	Folie 83: Modeling Formats & Languages
	Folie 84: Model Checking Format
	Folie 85: Example
	Folie 86: Example
	Folie 87: Example
	Folie 88: Example
	Folie 89: Example
	Folie 90: Example
	Folie 91: Example
	Folie 92: Example
	Folie 93: Starting from a Running Robotic System
	Folie 94: Example
	Folie 95: Example
	Folie 96: Model Checking in Industry
	Folie 97: Model Checking a Behavior Planner during Development
	Folie 98: Counter Examples – Double Merge
	Folie 99: Results
	Folie 100: Findings from 2 Projects briging FM to Autonomous Systems Engineering
	Folie 101
	Folie 102: Dynamic Deliberation with Behavior Trees
	Folie 103: Robust Autonomous Robots
	Folie 104: Robust Autonomous Robots
	Folie 105: Verification, Monitoring, Planning, Situation Understanding
	Folie 106: Overview
	Folie 107: Overview
	Folie 108: Overview
	Folie 109: AS2FM
	Folie 110
	Folie 111: Docking Example: Intro
	Folie 112: Docking Example: Robot High-Level SCXML Model
	Folie 113: Docking Example: Behavior Tree Plugins
	Folie 114: SMC Storm
	Folie 115: Overview
	Folie 116: Typical usage
	Folie 117
	Folie 118
	Folie 119: Performance Evaluation
	Folie 120: Model Checker Tool Demo
	Folie 121: The Most Versatile Probab. Model Checker wrt. Analysis Backends & Supported Model Types
	Folie 122: The Leading State-of-the-Art Probabilistic Model Checker
	Folie 123: Simulating a Dice with a Fair Coin
	Folie 124: Hands-on: Modeling & Model Checking of Robot Behavior
	Folie 125: Verifying the Behavior of a Robot in a Fetch & Carry Task
	Folie 126: Feedback Questionnaire
	Folie 127: Questions?

