
Session :
Cognitive Architectures,
Task Planning and PDDL

ACM SIGSOFT Summer School for Software Engineering in Robotics
Delft (Netherlands)

130/06/2025

Francisco J. Rodriguez Lera

2

Who I am
Researcher

https://orcid.org/0000-0002-8400-7079

https://orcid.org/0000-0002-8400-7079

3

Who I am
Researcher

https://orcid.org/0000-0002-8400-7079

https://orcid.org/0000-0002-8400-7079

4

Where I am
The team, collaborations, …

Outline

1. Introduction
2. PDDL
3. PDDL Elements
4. Planners
5. Exercises
6. Takeaways
7. Acknowledgments

Presentation Overview

5

Introduction

Someone wants to buy a mobile robot from the market and needs to choose
which one to purchase.

●The decision maker knows how many robots are available but knows nothing
about a specific one until they examine it.

●Upon examining specifications, the individual gains all the information
needed to evaluate its utility.

●However, acquiring this information incurs a cost, such as time or mental
effort.

6

Example

Introduction

We can frame this situation as a simple optimal stopping problem.

The challenge is to determine the optimal point at which the decision
maker should stop searching and make a purchase.

In each moment tn, the decision maker is aware of the value of the best
option they have seen so far, the number of remaining alternatives, and the
cost of examining another option.

7

Example

Architectures

Introduction

8
Ingrand, F., & Ghallab, M. (2017). Deliberation for autonomous robots: A survey. Artificial Intelligence, 247, 10-44.https://doi.org/10.1016/j.artint.2014.11.003
Generación de comportamientos en robots autónomos mediante una arquitectura cognitiva híbrida, PhD Thesis, Miguel Ángel González Santamarta, https://dialnet.unirioja.es/servlet/tesis?codigo=325041
Reference: Kotseruba, I., Tsotsos, J.K. 40 years of cognitive architectures: core cognitive abilities and practical applications. Artif Intell Rev 53, 17–94 (2020). https://doi.org/10.1007/s10462-018-9646-y

○ Deliberative → Fikes

○ Reactive → Brooks

○ Hybrid → Arkin

○ Three Layers → Gat

https://doi.org/10.1016/j.artint.2014.11.003
https://dialnet.unirioja.es/servlet/tesis?codigo=325041
https://doi.org/10.1007/s10462-018-9646-y

Architectures

Introduction

9
Ingrand, F., & Ghallab, M. (2017). Deliberation for autonomous robots: A survey. Artificial Intelligence, 247, 10-44.https://doi.org/10.1016/j.artint.2014.11.003
Generación de comportamientos en robots autónomos mediante una arquitectura cognitiva híbrida, PhD Thesis, Miguel Ángel González Santamarta, https://dialnet.unirioja.es/servlet/tesis?codigo=325041
Reference: Kotseruba, I., Tsotsos, J.K. 40 years of cognitive architectures: core cognitive abilities and practical applications. Artif Intell Rev 53, 17–94 (2020). https://doi.org/10.1007/s10462-018-9646-y

MERLIN 2
MachinEd Ros pLanINg

https://doi.org/10.1016/j.artint.2014.11.003
https://dialnet.unirioja.es/servlet/tesis?codigo=325041
https://doi.org/10.1007/s10462-018-9646-y

10

Architectures

Introduction

https://github.com/uleroboticsgroup/yasmin

https://github.com/uleroboticsgroup/yasmin

Hierarchical Architectures (aka: Deliberative, symbolic, classical…)

PLANSENSE ACT

Introduction

11

de Buy Wenniger, Gideon Maillette, and Attila
Houtkooper. "GOAP." (2008).

12

The robot helps the operator to carry some luggage to a car which is parked outside.

http://www.youtube.com/watch?v=rNqv0gxIsZ8

Modelling the Problem

● Main Goal
a. The robot helps the operator to carry a bag to a car parked outside.

● Optional Goals
a. Re-entering the arena
b. Following the queue on the way back to the arena

● Focus
a. Person following, navigation in unmapped environments, social navigation.

● Setup
a. Locations:

■ The test takes place both inside and outside the Arena.
■ The robot starts at a predefined location in the living room.

b. People: The operator is standing in front of the robot and is pointing at the bag to be carried outside.
c. Objects: At least two bags are placed near the operator (within a 2m distance and visible to the robot).

13

Carry My Luggage Example
2024

14

Modelling the Problem
Carry My Luggage Example

● Picking up the bag: The robot picks up the bag pointed at by the operator.
● Following the operator: The robot should inform the operator when it is ready to follow them.

The operator walks naturally towards the car; after reaching the car, the operator takes the bag
back and thanks the robot.

● Obstacles: The robot will face 4 obstacles along its way (in arbitrary order): (a) a small object on
the ground, (b) a hard-to-see object, (c) a crowd of people obstructing the path outside, and (d)
a small area blocked using retractable barriers.

● Optional goals:
○ Re-entering the arena: The robot returns to the arena, going back in through the

entrance.
○ Following the queue: After the robot has reached the car, a few of the people that formed

the crowd obstructing the robot return to the arena in a queue. The robot can decide to
join the queue on its way back to the arena, in a manner that appears natural to the people
in the queue.

Rulebook reference: https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1

https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1

Modelling the Problem

Using an example from Pednault (1988), let's consider a scenario with a
single briefcase, B, that we want to use for transporting objects. Pednault
models this straightforward domain with three operators:

●MovB(l) for moving the briefcase along with its contents,
●PutIn(x) for placing an item x into the briefcase, and
●TakeOut(x) for removing an item from the briefcase.

15

Pednault’s example

Modelling the Problem

16

Pednault’s example

● PDDL ("Planning Domain Definition Language") is an attempt to standardize planning domain
and problem description languages.

● PDDL originated from the 1998 International Planning Competition (IPC) committee.

● It aimed to promote empirical comparison between planning systems and benchmark diffusion.

● PDDL has enhanced planning system evaluation and led to performance and expressivity
improvements.

● It has become a standard language for planning domain description in IPC, with its collection of
domains serving as standard benchmarks.

● It has facilitated the spread of planning techniques in various research and application
domains, where modeling and solving decision problems are challenging

Introduction

17

PDDL

Introduction

● PDDL takes the problem's formalization, or model, as its input and employs various
problem-solving techniques such as heuristic search or propositional satisfiability
to derive a solution.

● Tasks such as transforming the model into a searchable space or logical reasoning
problem and devising efficient heuristics to tackle it, are challenges for the
planner's designer.

● The planner itself doesn't require knowledge of the specific problem description; it
can operate on any problem expressed in its modeling language.

● Not every planner can solve every problem it's given. This characteristic of
planners is termed domain-independence.

18

AI Planning System vs Planner

19

Components of a PDDL planning task:

• Objects: Things in the world that interest us.
• Predicates: Properties of objects that we are interested in;
can be true or false.
• Initial state: The state of the world that we start in.
• Goal specification: Things that we want to be true.
• Actions/Operators: Ways of changing the state of the world.

Introduction
PDDL

1. PDDL 1.2 (1998-2000):
○ Official language of the 1st and 2nd IPC(International Planning Competition).

2. PDDL 2.1 (2002):
○ Introduced functions, durative actions, and plan metrics.

3. Extensions of PDDL 2.1:
○ PDDL+ (continuous changes and predictable exogenous events).
○ Mapl (Multi-Agent Planning Language).
○ Opt (Ontology with Polymorphic Types).

4. NDDL (2003):
○ Proposed by NASA, based on activities and constraints rather than states and actions.

5. PDDL 2.2 (2004):
○ Introduced axioms and timed predicates.
○ Ppddl (Probabilistic PDDL) for probabilistic effects.

6. PDDL (2006):
○ Introduced state-trajectory constraints and preferences.
○ Appl (Abstract Plan Preparation Language) proposed.

7. PDDL 3.1 (2008):
○ Introduces object-fluents.
○ Extensions: RDDL (Relational Dynamic Influence Diagram Language) and MA-PDDL (Multi-Agent PDDL).

Introduction

20

PDDL Versions

Introduction

Reference Pellier, Damien & Fiorino, Humbert. (2017). PDDL4J: a
planning domain description library for java. Journal of Experimental &
Theoretical Artificial Intelligence. 30. 1-34.
10.1080/0952813X.2017.1409278.

21

History

● Notation BNF/EBNF
○ It stands for Backus-Naur Form. It is a formal, mathematical way to specify context-free

grammars.
○ It is precise and unambiguous
○ EBNF (Extended BNF) is widely used as the de facto standard to define programming languages

● Requirements
○ Each rule is of the form <syntactic element> ::= expansion.
○ Angle brackets (<>) delimit names of syntactic elements.
○ Square brackets ([]) surround optional material.
○ An asterisk (*) means “zero or more of”; a plus (+) means “one or more of.”
○ Some syntactic elements are parameterized. E.g., <list (symbol)> might denote a list of

symbols, where there is an EBNF definition for <list x> and a definition for <symbol>. The
former might look like <list x> ::= (x*) so that a list of symbols is just <symbol>*.

○ Ordinary parentheses are an essential part of the syntax we are defining and have no semantics
in the EBNF meta language.

Origin

PDDL Notation

22

References:
https://www.inf.ed.ac.uk/teaching/courses/propm/papers/ddl.html
https://condor.depaul.edu/ichu/csc447/notes/wk3/BNF.pdf
http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/kovacs-pddl-3.1-2011.pdf

https://www.inf.ed.ac.uk/teaching/courses/propm/papers/ddl.html
https://condor.depaul.edu/ichu/csc447/notes/wk3/BNF.pdf
http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/kovacs-pddl-3.1-2011.pdf

● Optional elements are enclosed in square brackets ([])

● Names, such as domain, predicate, action, etc., are typically comprised of alphanumeric
characters, hyphens (-), and underscores (_), although some planners may impose
restrictions.

● Parameters of predicates and actions are identified by commencing with a question mark
(?).

● In predicate declarations (the :predicates section), parameters serve solely to specify
the number of arguments for the predicate; hence, the specific parameter names are
inconsequential as long as they are unique.

● Predicates can encompass zero parameters; however, in such cases, the predicate name
must still be encapsulated within parentheses.

23

Origin

PDDL Notation

Most planners do not fully support all elements of any version of PDDL.

Additionally, many planners have unique "features." For instance, they might misinterpret certain PDDL
constructs or require slight syntax variations that deviate from the official language specification.

●Some planners implicitly require all arguments to an action to be distinct.
●Some planners mandate that action preconditions and/or effects be written as conjunctions (i.e., as
(and ...)) even if the precondition/effect contains only one atomic condition or no condition at all.

●Most planners ignore the :requirements section of the domain definition. However, some planners
may fail to parse a domain definition if this section is missing or contains an unrecognized keyword

24

Issues

PDDL Notation

● Use the simplest constructs necessary to express the problem.
● Read the documentation for the specific planner you intend to use.

25

Tricks

PDDL Notation

References

https://planning.wiki/
26

Web Reference

https://planning.wiki/

References

The main purpose of modelling planning problems in PDDL is to apply automated planning systems to
find solution plans.

●http://planning.domains is an online repository of planning benchmark models, which also includes an
on-line editor with PDDL-specific features such as syntax highlighting and semi-automatic instantiation
of some common model patterns.

●http://icaps-conference.org/index.php/Main/Competitions (the “deterministic” tracks). Each of the
competitions since 2008 has provided links to the source code of participating planning systems.

●https://github.com/KCL-Planning/VAL : The VAL tool suite includes a PDDL syntax checker and a plan
validator. A plan validator is a tool that takes as input a problem definition (in PDDL) and a plan, and
determines if the plan solves the problem. Validating manually written plans can be a useful approach
to debug the problem definition. An alternative implementation of a plan validator for PDDL is INVAL
(https://github.com/patrikhaslum/INVAL).

27

Writing and Debugging PDDL

http://planning.domains
http://icaps-conference.org/index.php/Main/Competitions
https://github.com/KCL-Planning/VAL
https://github.com/patrikhaslum/INVAL

28

Parts of a PDDL

Using PDDL

29

● Domain

The domain definition includes the domain predicates and operators (referred to as actions
in PDDL). It may also encompass types (see Typing below), constants, static facts, and
various other elements. However, most planners do not support many of these features.

Domain

PDDL elements

30

31

Domain

PDDL elements

● The domain is defined with the (define (domain <name>) ...)
construct, where <name> is the identifier for the domain.

32

Domain - Definition

PDDL elements

● The :requirements field specifies the features and constructs the domain uses,
○ :strips This is the basic requirement for any PDDL domain. It stands for "Stanford Research Institute Problem Solver" and indicates

that the domain uses basic STRIPS-style operators. Allows for simple actions with preconditions and effects that involve adding or
deleting predicates.

○ :typing This requirement allows the use of types for objects, making the domain definition more expressive and structured.
Enables the declaration of different types of objects, which can help in organizing the domain and making the preconditions and effects
more readable.

○ :adl stands for Action Description Language, an extension of PDDL (Planning Domain Definition Language) that allows for more
expressive planning problem definitions. ADL includes additional features that make it possible to describe more complex preconditions
and effects for actions, going beyond the capabilities of basic STRIPS operators.

○ :negative-preconditions This requirement allows the use of types for objects, making the domain definition more
expressive and structured. Enables the declaration of different types of objects, which can help in organizing the domain and making
the preconditions and effects more readable.

○ :disjunctive-preconditions Allows the use of disjunctions (logical OR) in the preconditions of actions. This
enables defining actions that can occur under multiple alternative conditions.Increases the flexibility in specifying when
actions can be taken.

○ :durative-actions allow for the modeling of actions that take time to execute, with conditions and effects specified
at different points in time

● Example: (:requirements :strips :typing :negative-preconditions)

33

Domain - Requirements

PDDL elements

● Except for the special predicate =, predicates in a domain definition have no intrinsic
meaning.

● The :predicates section of a domain definition only specifies the names of the
predicates used in the domain and their number of arguments (and argument types if
the domain uses typing).

● The "meaning" of a predicate—regarding which combinations of arguments it can be
true for and its relationship to other predicates—is determined by the effects that
actions in the domain have on the predicate and by which instances of the predicate
are listed as true in the initial state of the problem definition.

● A distinction is commonly made between static and dynamic predicates: a static
predicate is not changed by any action.

34

Domain - Predicates

PDDL elements

● Actions are the primary elements that define the possible operations within a planning
domain. Each action describes how the state of the world can change when the action is
executed. Actions consist of parameters, preconditions, and effects:

○ Parameters: The variables involved in the action.
○ Preconditions: Conditions that must hold true for the action to be performed.
○ Effects: Changes that occur as a result of the action.

● All parts of an action definition except the name are optional (according to the PDDL
specification).

● An action that has no preconditions some planners may require an "empty" precondition,
in the form :precondition() or :precondition(and), and some planners may also
require an empty :parameter list for actions without parameters).

35

Domain - Actions

PDDL elements

36

Domain - Actions

PDDL elements

(:action move
 :parameters (?v - vehicle ?from - location ?to - location)
 :precondition (and (at ?v ?from) (not (= ?from ?to)))
 :effect (and (not (at ?v ?from)) (at ?v ?to)))

37

STRIPS (Stanford Research Institute Problem Solver) is a simpler and more limited
planning language. It only allows conditions and effects as conjunctions of positive
literals or simple negations. It does not support disjunctions, quantifiers, or conditional
effects. It is easy to implement and widely supported by classical planners.

ADL (Action Description Language) extends STRIPS by offering greater
expressiveness: it allows disjunctions, complex negations, existential and
universal quantifiers, and conditional effects. This enables modeling more complex
domains, although not all planners support ADL directly.

Domain - Actions

PDDL elements

38

Feature STRIPS ADL

Conjunctions (and) ✅ Supported ✅ Supported

Disjunctions (or) ❌ Not allowed ✅ Supported

Complex negation (not, imply) ❌ Not allowed ✅ Supported

Quantifiers (forall, exists) ❌ Not allowed ✅ Supported

Conditional effects (when) ❌ Not allowed ✅ Supported

Object typing ✅ Optional ✅ Optional

Example planner Fast Downward, popf VHPOP

Domain - Actions

PDDL elements

Strips

●An atomic formula:
(PREDICATE_NAME ARG1 ... ARG_N)
The predicate arguments must be parameters of the action (or constants declared in the
domain, if the domain has constants).

●A conjunction of atomic formulas:
(and ATOM1 ... ATOM_N)

39

ADL

●A general negation, conjunction or
disjunction:
(not CONDITION_FORMULA)
(and CONDITION_FORMULA1 ... CONDITION_FORMULA_N)

(or CONDITION_FORMULA1 ... CONDITION_FORMULA_N)

●A quantified formula:
(forall (?V1 ?V2 ...) CONDITION_FORMULA)

(exists (?V1 ?V2 ...) CONDITION_FORMULA)

Domain - Preconditions

PDDL elements

:effects describe how the state of the world changes as a result of an action being
executed. They specify which facts become true and which facts become false after the
action occurs. Effects can be simple (adding or deleting facts) or complex (conditional effects
that depend on certain conditions).

The effects of an action are not explicitly categorized as "adds" and "deletes."

Negative effects (deletes) are indicated by negation.

40

Domain - Effects

PDDL elements

41

Strips

●An added atom:
(PREDICATE_NAME ARG1 ... ARG_N)
 The predicate arguments must be parameters of the action (or constants
declared in the domain, if the domain has constants).

●A deleted atom:
(not (PREDICATE_NAME ARG1 ... ARG_N))

●A conjunction of atomic effects:
(and ATOM1 ... ATOM_N)

ADL

●A conditional effect:
(when CONDITION_FORMULA EFFECT_FORMULA)
The interpretation is that the specified effect takes place only if the
specified condition formula is true in the state where the action is executed.
Conditional effects are usually placed within quantifiers.

●A universally quantified formula:
(forall (?V1 ?V2 ...) EFFECT_FORMULA)

Domain - Effect

PDDL elements

42

(define (domain logistics)
 (:requirements :strips :typing :negative-preconditions :disjunctive-preconditions)
 (:types robot location person)
 (:predicates
 (at ?obj - (either robot person) ?loc - location)
 (in ?person - person ?robot - robot))
 (:action move
 :parameters (?v - robot ?from - location ?to - location)
 :precondition (and (at ?v ?from) (not (= ?from ?to)))
 :effect (and (not (at ?v ?from)) (at ?v ?to)))
 (:action board
 :parameters (?p - person ?v - robot ?loc - location)
 :precondition (and (at ?p ?loc) (at ?v ?loc))
 :effect (and (not (at ?p ?loc)) (in ?p ?v)))
 (:action debark
 :parameters (?p - person ?v - robot ?loc - location)
 :precondition (in ?p ?v)
 :effect (and (not (in ?p ?v)) (at ?p ?loc)))
 (:action visit
 :parameters (?p - person ?loc1 - location ?loc2 - location)
 :precondition (or (at ?p ?loc1) (at ?p ?loc2))
 :effect (and (not (at ?p ?loc1)) (at ?p ?loc2)))
)

Domain - Example I

PDDL elements

The problem definition contains the objects present in the problem instance, the initial state
description and the goal.

Key Components of a PDDL Problem File

1.Problem Definition: The problem file starts with a definition that includes the problem name and the
associated domain.

2.Objects: Declares the specific instances of the types defined in the domain.
3.Initial State: Describes the facts that are true at the beginning of the planning problem.
4.Goal State: Specifies the conditions that must be true for the problem to be considered solved.

43

Problem

PDDL elements

44

Problem

PDDL elements

45

● The initial state description (the :init section) is simply a list of all the ground
atoms that are true in the initial state. All other atoms are by definition false.

● The :goal description is a formula of the same form as an action precondition.

● All predicates used in the initial state and goal description should naturally be
declared in the corresponding domain.

● The initial state and goal descriptions should be ground, meaning that all predicate
arguments should be object or constant names rather than parameters.

46

Problem

PDDL elements

47

Problem

PDDL elements
(define (problem logistics-problem-robot)
 (:domain logistics)

 (:objects
 robot1 robot2 - robot
 loc1 loc2 loc3 - location
 box1 box2 - object)

 (:init
 (at robot1 loc1)
 (at robot2 loc2)
 (at box1 loc1)
 (at box2 loc3))

 (:goal
 (and
 (at robot1 loc2)
 (at box1 loc2)
 (at box2 loc1)))
)

48

Example

PDDL elements

Description: Only PDDL exercises

Goal: Get familiar with PDDL formalism

Number: 1-5

49

Exercises
Basic level

Planners

● In the context of artificial intelligence and automated planning, is a software tool or system
designed to generate a sequence of actions to achieve a desired goal or set of goals in a given
environment or domain.

● Planners are used in various applications where automated decision-making or task scheduling is
required, such as robotics, scheduling, logistics, and process automation.

● There are a plethora of planners, sourced from both the latest International Planning Competition
(IPC), which have undergone rigorous testing and verification on standard planning competition
domains.

● It's important to note that these planners are primarily state-of-the-art research prototypes, and
there is no absolute assurance of bug-free performance or flawless operation across all domains.

● IPC labs serve as excellent environments for uncovering peculiar bugs within planners.

50

Introduction

Planners

● Classical Planners: These planners operate on fully observable, deterministic planning
problems. They typically use search algorithms to explore the state space defined by
the initial and goal states and the available actions.

● Probabilistic Planners: These planners handle uncertainty in the environment by
incorporating probabilistic models. They often use techniques such as Monte Carlo
methods or Markov Decision Processes (MDPs) to generate plans.

● Temporal Planners: These planners handle temporal aspects of planning problems,
such as action durations, deadlines, and concurrency constraints. They often use
temporal reasoning techniques to generate plans.

51

Introduction

● Categories satisficing and optimizing
○ Optimizing planners aim at producing an optimal plan based on a predefined cost

function, regardless of the time required to generate it. This could involve minimizing
the number of actions or the total cost associated with executing the plan.

○ Satisficing planners prioritize efficiency, striving to generate a satisfactory plan within a
reasonable timeframe.

○ While an optimizing planner may prioritize speed over plan quality, this approach is
typically undesirable. A plan with a significantly higher cost but generated faster is
rarely preferable to a more efficient alternative.

○ Satisficing planners seek to strike a balance between time efficiency and plan quality.
Some employ heuristic methods to generate a single plan optimized for both criteria,
while others offer more flexibility, initially generating a plan and then refining it until
interrupted by the user.

52

Planners
Categories

Planning involves the strategic selection and arrangement of actions aimed at altering the states within a
system.

In modeling states and transitions, System ∑ entails:

●A collection of states, denoted as S, which is recursively enumerable.
●A collection of actions, denoted as A, also recursively enumerable. These actions are under the control of the

planner and may include a "no-op" option.
●A set of events, denoted as E, similarly recursively enumerable. Unlike actions, events are beyond the control

of the planner and may include a neutral event, labeled as "e."
●A transition function, represented by

mapping the combination of current state, action, and event to a subset of possible future states (2S).

This function acknowledges that actions and events may sometimes be applied separately .

53

Planners
Classic Automated planning

Reference: http://ktiml.mff.cuni.cz/~bartak/AAAI2018/lecture.pdf

http://ktiml.mff.cuni.cz/~bartak/AAAI2018/lecture.pdf

A plan in the context of PDDL is a sequence of actions that, when executed starting
from the initial state, leads to the achievement of the specified goals. Plans are
typically represented as a list of actions along with their parameters and conditions.

Remember!!:

●Action Sequence: The ordered sequence of actions that need to be executed.
●Action Parameters: The specific objects or entities involved in each action.
●Preconditions: Conditions that must be true before an action can be executed.
●Effects: Changes to the state of the world caused by executing an action.

54

Planners
Plans

Planners

The resolution to a planning dilemma manifests as a plan.
The characteristics of a plan:

Let's denote D as a domain definition and P as a problem definition within D. We'll utilize the subsequent
notation to reference the constituents of both the domain and the problem:

●types(D) signifies the collection of type names specified in the :types section of D.
●predicates(D) indicates the predicates defined within D.
●actions(D) denotes the action schemas outlined in D.
●For each action schema a in actions(D) , name(a) represents the action's name, and param(a) signifies the

sequence x1; ...; xk of its parameters. For each parameter xi, type-of(xi) denotes the type name
declared for the i-th parameter of the action. If the parameter lacks a declared type, type-of(xi) is
designated as object. Similarly, name(p) and param(p) delineate the name and parameters, respectively, of
each predicate p within predicates(D) .

●objects(D) denotes the collection of object names mentioned in the :objects section of P.
●init(D) encompasses the ground facts listed in the :init section of P.
●goal(D) represents the formula stated in the :goal section of P.

55

Resolution

Planners

Plan validity refers to whether a generated plan is feasible and correct for solving the given planning
problem.

1. Satisfaction of Preconditions: Each action in the plan must have its preconditions satisfied in the
current state before it can be executed.

2. Consistency with Domain: The actions in the plan must adhere to the constraints and definitions
specified in the domain file, including types, predicates, and action definitions.

3. Achievement of Goals: The execution of the plan from the initial state should lead to the achievement
of the specified goals in the goal state.

4. Absence of Conflicts: Actions in the plan should not lead to conflicts or inconsistencies, such as
violating exclusivity constraints or causing state contradictions.

5. Resource Constraints: Plans should respect resource constraints, such as time, energy, or resource
availability, specified in the domain file.

56

Plan Validity

● If the domain doesn't define any type names, all objects default to the type
object. In such instances, there are no limitations on the objects that can be
substituted for parameters within an action schema to generate a ground action
instance.

● if the domain employs typing, a crucial requirement for a plan to be deemed
valid is that the objects used to instantiate the ground actions correspond
correctly to the types required by the action's parameters.

● it's necessary to precisely define the relationship between objects and types.
● Given that types in PDDL can establish a hierarchical structure, there exists a

subtype-supertype relationship among types, along with a mapping from objects
to their respective types.

57

Planners
Type Correctness

● The actions outlined in a plan instigate alterations to the state.
● Upon the plan's successful execution, the resultant state satisfies the

specified goal.
● In the discrete and deterministic subset of PDDL, a state is characterized

by the collection of facts that hold true within it.

58

Planners
State Transitions

There are also less strictly ordered forms of plans.

Lifting restrictions on the order of actions is important for scheduling a plan,
since it gives flexibility to place the actions in time.

59

Planners
Non-sequential plans

● The algorithms utilized in planning, aim to find viable routes or series of actions
enabling an agent to transition from an initial state to a desired goal state.

● These algorithms systematically explore the agent's environment, guided by a
defined strategy to devise a plan.

● Exploration entails methodically searching for feasible plans throughout various
states the agent may encounter.

● A state could represent the position and orientation of a robot or a specific
arrangement of tiles in an eight-puzzle scenario.

● A state space encompasses the entirety of potential states an agent can occupy
or reach when executing feasible actions from a given state.

60

Planners
Algorithms

61

Planners
Forward Search (Progression)

● Forward search is a method where the planner starts from the initial state and
applies actions to progress towards the goal state.

● This is a state-space search technique where each node in the search tree
represents a possible state of the world, and edges represent actions that
transition between states.

Advantages:

● Forward search is correct (if it returns a plan, that plan is a valid solution).
● Forward search is complete (if a plan exists, the search will eventually find

it).

Disadvantages:

● High number of applicable actions at each state.
● Excessively large branching factor.
● Not feasible for plans with many steps.

62

Planners
Forward Search (Progression)

Key Concepts

1.Initial State: The starting point of the search, representing the current state of
the world.

2.Goal State: The target state that the planner aims to reach.
3.Actions: Operators defined in the PDDL domain that can change the state
when applied.

4.Preconditions: Conditions that must be true for an action to be applicable.
5.Effects: Changes that occur in the state after an action is applied.

63

Planners
Forward Search (Progression)

Steps in Forward Search

1.Initialization:
○ Start from the initial state as the root of the search tree.

2.Action Application:
○ For each current state, evaluate which actions are applicable based on their preconditions.
○ Apply applicable actions to generate successor states.

3.State Transition:
○ Transition to successor states by applying the effects of the actions.
○ Add the new states to the search tree as child nodes of the current state.

4.Goal Test:
○ Check if the current state satisfies the goal conditions.
○ If a goal state is reached, a plan (sequence of actions leading from the initial state to the goal state) is

found.
5.Search Strategy:

○ Use a specific search strategy to explore the search tree. Common strategies include breadth-first search,
depth-first search, and heuristic-guided search (e.g., A*).

64

Planners
Forward Search (Progression)

65

(define (domain logistics)
 (:requirements :strips :typing)
 (:types robot location object)
 (:predicates

(at ?obj - (either robot object) ?loc - location)
(holding ?r - robot ?obj - object))

 (:action move
:parameters (?r - robot ?from - location ?to - location)
:precondition (and (at ?r ?from) (not (= ?from ?to)))
:effect (and (not (at ?r ?from)) (at ?r ?to)))

 (:action pick_up
:parameters (?r - robot ?obj - object ?loc - location)
:precondition (and (at ?r ?loc) (at ?obj ?loc))
:effect (and (not (at ?obj ?loc)) (holding ?r ?obj)))

 (:action put_down
:parameters (?r - robot ?obj - object ?loc - location)
:precondition (holding ?r ?obj)
:effect (and (not (holding ?r ?obj)) (at ?obj ?loc)))

)

(define (problem logistics-problem-robot)
 (:domain logistics)
 (:objects
 robot1 - robot
 loc1 loc2 loc3 - location
 box1 - object)
 (:init
 (at robot1 loc1)
 (at box1 loc1))
 (:goal
 (at box1 loc2))
)

PDDL Domain PDDL Problem

Planners
Forward Search (Progression)

66

Progression Search Execution

1.Initial State:
○ robot1 is at loc1
○ box1 is at loc1
○ No objects are being held

2.Possible Actions from Initial State:
○ (move robot1 from loc1 to loc2)

○ (move robot1 from loc1 to loc3)

○ (pick_up robot1 box1 loc1)

3.Apply (pick_up robot1 box1 loc1):
○ Preconditions: (at robot1 loc1), (at box1 loc1) (both true)
○ Effects: (not (at box1 loc1)), (holding robot1 box1)
○ New State:

■ robot1 is at loc1
■ box1 is being held by robot1

Planners
Forward Search (Progression)

67

Progression Search Execution

4.Possible Actions from New State:
○ (move robot1 from loc1 to loc2)

○ (move robot1 from loc1 to loc3)

○ (put_down robot1 box1 loc1)

5.Apply (move robot1 from loc1 to loc2):
○ Preconditions: (at robot1 loc1), (not (= loc1 loc2)) (both true)
○ Effects: not (at robot1 loc1), (at robot1 loc2)
4. New State:

4. robot1 is at loc2
■ box1 is being held by robot1

•Possible Actions from New State:
○ (put_down robot1 box1 loc2)

○ (move robot1 from loc2 to loc1)

○ (move robot1 from loc2 to loc3)

Planners
Forward Search (Progression)

68

Progression Search Execution

7.Apply (put_down robot1 box1 loc2):
○ Preconditions: (holding robot1 box1) (true)
○ Effects: (not (holding robot1 box1)), (at box1 loc2)
○ New State:

■ robot1 is at loc2
7. box1 is at loc2

•Goal Test:
○ Check if (at box1 loc2) is true in the current state.
○ Goal is satisfied. The plan is found.

Resulting Plan

7.Action 1: (pick_up robot1 box1 loc1)
•Action 2: (move robot1 loc1 loc2)
•Action 3: (put_down robot1 box1 loc2)

This sequence of actions forms a valid plan to move box1 from loc1 to loc2.

Planners
Forward Search (Progression)

This reasoning method starts from the final goal and moves backward
through the rules and available knowledge to determine which facts or
conditions are necessary to achieve that goal.

Backward search operates from a conclusion to identify the necessary
premises that support it.

69

Planners
Backward Search (Regression Planning)

Advantages:

● Backward search is correct (if it returns a plan, that plan is a valid solution).
● Backward search is complete (if a plan exists, the search will eventually

find it).

Disadvantages:

● Although the branching factor is typically lower than in forward search, the
search space remains too large.

70

Backward Search (Regression Planning)

Planners

71

Aspect Forward Search (Progression) Backward Search (Regression)

Start Point Initial state Goal state

Search Direction From initial state toward goal From goal state toward initial

Typical Use Case Most search algorithms (DFS, BFS, A*, IDDFS) Planning problems where goal is well defined

Action Application Apply actions to generate successors Apply inverse actions to regress from goal

Efficiency Efficient when branching factor is low near the root Efficient when goal is compact or has fewer preimages

Complexity Can be high if many irrelevant paths May be lower if goal constraints prune the space

Comparison

Planners

Breadth-First Search (BFS) explores and
traverses a search graph or tree. The algorithm
begins at a root node and explores all
neighboring nodes at the same level before
moving on to the next level of nodes.

72

Planners
Search Strategies

Depth-First Search (DFS) is a graph traversal
algorithm that explores as far as possible along
each branch before backtracking. It begins at a
root node (or any arbitrary node in a graph) and
uses a stack (explicitly or via recursion) to
remember the path, enabling it to backtrack when
it reaches a dead end.

73

Planners
Search Strategies

Iterative Deepening Search (IDS) (aka Iterative Deepening Depth First
Search(IDDFS)) involves conducting a series of limited-depth searches, starting
with a depth limit of one and gradually increasing until a solution is found. In each
iteration, the algorithm performs a limited-depth search on the search tree up to
the current depth limit. If no solution is found, the depth limit is incremented by
one, and the search is performed again.

74

Planners
Search Strategies

https://www.geeksforgeeks.org/dsa/iterative-deepening-searchids-iterative-deepening-depth-first-searchiddfs/

https://www.geeksforgeeks.org/dsa/iterative-deepening-searchids-iterative-deepening-depth-first-searchiddfs/

75

Algorithm Time Complexity Space Complexity When to Use

DFS O(bᵈ) O(d) – When the solution is not necessarily close to the root
– When the graph/tree is not very large or is finite

BFS O(bᵈ) O(bᵈ) – When memory is not a constraint
– When you need the closest solution to the root

IDDFS O(bᵈ) O(b·d) – When you want the benefits of BFS but have limited memory
– Acceptable if slightly slower performance is okay

Planners
Comparison

b = branching factor  d = depth of the shallowest solution

76

Planners
Sussman Anomaly

Sussman Anomaly refers to a scenario in AI planning where a seemingly
straightforward problem-solving approach encounters unexpected complexity due
to the order of operators' application.

It was first described by Gerald Jay Sussman in his work on computer models of
physical systems.

A problem that appears simple can lead to a significantly longer solution path than
expected, mainly because of the interplay between parallel and sequential
execution of actions.

This anomaly highlights the importance of understanding the interactions between
different actions and their potential effects on the overall problem-solving process.

77

Planners
Sussman Anomaly

78

Planners
Sussman Anomaly

Session 4:
Task Planning and PDDL

ACM SIGSOFT Summer School for Software Engineering in Robotics

7906/06/2024

Description: Only PDDL exercises

Goal: Get familiar with PDDL formalism

Number: 1-5

80

Exercises
Basic level

81

Exercises
Medium level: Plansys 2

Description: using PDDL with ROS 2 using Plansys 2

Goal: Get familiar with the integration and deployment of PDDL in ROS 2
environments

Number: 6

82

PlanSys2
History: RosPlan

● The Knowledge Base is used to store a
PDDL model.

● The Problem Interface is used to
generate a PDDL problem, publish it on a
topic, or write it to file.

● The Planner Interface is used to call a
planner and publish the plan to a topic, or
write it to file.

● The Parsing Interface is used to convert
a PDDL plan into ROS messages, ready
to be executed.

● The Plan Dispatch encapsulates plan
execution

83

Architecture
RosPlan

● Loads a PDDL domain (and optionally
problem) from file.

● Stores the state as a PDDL instance.
● Is updated by ROS messages.
● Can be queried.

84

PlanSys2
Architecture

85

● Domain Expert: Contains the PDDL model information (types, predicates, functions, and
actions).

● Problem Expert: Contains the current instances, predicates, functions, and goals that
compose the model.

● Planner: Generates plans (sequence of actions) using the information contained in the
Domain and Problem Experts.

● Executor: Takes a plan and executes it by activating the action performers (the ROS2
nodes that implement each action).

PlanSys2
Elements

86

● Interactive CLI to test and monitor the planning system

● Not required in production — used for testing and debugging

● The state is stored in the PlanSys2 components, not in the terminal

● You can open/close multiple terminal sessions freely

PlanSys2
PlanSys CLI

https://github.com/PlanSys2/ros2_planning_system/blob/rolling/plansys2_docs/tutorials/tut_1_terminal.md
https://github.com/PlanSys2/ros2_planning_system_examples/tree/rolling

https://github.com/PlanSys2/ros2_planning_system/blob/rolling/plansys2_docs/tutorials/tut_1_terminal.md
https://github.com/PlanSys2/ros2_planning_system_examples/tree/rolling

87

0. Requisites:
 Install PlanSys2 (see official docs)
 Download the example domain:
 wget -P /tmp
https://raw.githubusercontent.com/IntelligentRoboticsLabs/ros2_planning_s
ystem_examples/master/plansys2_simple_example/pddl/simple_example.pddl

1. Launch PlanSys2:
 ros2 launch plansys2_bringup plansys2_bringup_launch_distributed.py
model_file:=/tmp/simple_example.pddl

PlanSys2
CLI

88

PlanSys2
CLI

2. Launch the terminal in a new shell:
 ros2 run plansys2_terminal plansys2_terminal

You will see:
 ROS2 Planning System console. Type "quit" to finish

Tips:

● Arrow keys = command history

● TAB = autocompletion

● Ctrl + D = quit

89

PlanSys2
CLI

Inspect the Domain

Check domain definition:
 get domain

List elements:
 get model types
 get model predicates
 get model actions

Get details:
 get model predicate robot_at
 get model action move

Define the Problem

Add instances:
 set instance leia robot
 set instance kitchen room
 ...

Add predicates (facts):
 set predicate (connected kitchen dinning)
 set predicate (robot_at leia entrance)
 ...

Define a goal:
 set goal (and(robot_at leia bathroom))

90

PlanSys2
CLI

Generate the Plan

Compute a plan:
 get plan

Example output:
 (askcharge leia entrance chargingroom)
 (charge leia chargingroom)
 (move leia chargingroom kitchen)
 ...

Planner creates:

● /tmp/domain.pddl

● /tmp/problem.pddl

Optional – run manually:
 ros2 run popf popf /tmp/domain.pddl /tmp/problem.pddl

91

$ ros2 launch plansys2_bringup plansys2_bringup_launch_distributed.pymodel_file:=./domain.pddl

$ ros2 run plansys2_terminal plansys2_terminal --ros-args -p problem_file:=/problem.pddl

PlanSys2
CLI

92

Exercises
Expert level: MERLIN 2

Description: using a complete Cognitive Architecture in ROS 2

Goal: Get familiar with Cognitive Architectures

Number: 7

93

The robot helps the operator to carry some luggage to a car which is parked outside.

http://www.youtube.com/watch?v=rNqv0gxIsZ8

Modelling the Problem

● Main Goal
a. The robot helps the operator to carry a bag to a car parked outside.

● Optional Goals
a. Re-entering the arena
b. Following the queue on the way back to the arena

● Focus
a. Person following, navigation in unmapped environments, social navigation.

● Setup
a. Locations:

■ The test takes place both inside and outside the Arena.
■ The robot starts at a predefined location in the living room.

b. People: The operator is standing in front of the robot and is pointing at the bag to be carried outside.
c. Objects: At least two bags are placed near the operator (within a 2m distance and visible to the robot).

94

Carry My Luggage Example

95

Modelling the Problem
Carry My Luggage Example

1. Picking up the bag: The robot picks up the bag pointed at by the operator.
2. Following the operator: The robot should inform the operator when it is ready to follow them.

The operator walks naturally towards the car; after reaching the car, the operator takes the bag
back and thanks the robot.

3. Obstacles: The robot will face 4 obstacles along its way (in arbitrary order): (a) a small object on
the ground, (b) a hard-to-see object, (c) a crowd of people obstructing the path outside, and (d)
a small area blocked using retractable barriers.

4. Optional goals:
4.1. Re-entering the arena: The robot returns to the arena, going back in through the entrance.
4.2. Following the queue: After the robot has reached the car, a few of the people that formed the

crowd obstructing the robot return to the arena in a queue. The robot can decide to join the
queue on its way back to the arena, in a manner that appears natural to the people in the
queue.

Rulebook reference: https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1

https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1

96

Architecture
MERLIN2

97

Architecture
MERLIN2

98

Architecture
MERLIN2

Formalizing Robotics Competitions: A practical case for RoboCup@Home Challenge Irene González-Fernández, Miguel A. González-Santamarta, Claudia
Álvarez-Aparicio, Juan Diego Peña Narváez, Francisco Martín and Francisco J. Rodríguez-Lera IEEE ICARSC 2024

99

Architecture
Components

Formalizing Robotics Competitions: A practical case for RoboCup@Home Challenge Irene González-Fernández, Miguel A. González-Santamarta, Claudia
Álvarez-Aparicio, Juan Diego Peña Narváez, Francisco Martín and Francisco J. Rodríguez-Lera IEEE ICARSC 2024

100

Acknowledgement
DMARCE

DMARCE (EDMAR+CASCAR) Project PID2021-126592OB-C21 +
PID2021-126592OB-C22 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A
way of making Europe

101

Acknowledgement
CORESENSE

Session :
Cognitive Architectures,
Task Planning and PDDL

ACM SIGSOFT Summer School for Software Engineering in Robotics
Delft (Netherlands)

10230/06/2025

Francisco J. Rodriguez Lera

