Cognitive Architectures,
Task Planning and PDDL

ACM SIGSOFT Summer School for Software Engineering in Robotics
Delft (Netherlands)

o &mv,erSldad
v ledn

Francisco J. Rodriguez Lera

30/06/2025 1

Who I am

Researcher

GRUPO DE ROBOTICA

universidad
deledn

https://orcid.org/0000-0002-8400-7079

X
universidad
de ledn

https://orcid.org/0000-0002-8400-7079

universidad
de ledn

Who I am

Researcher

GRUPO DE ROBOTICA

universidad
deledn

https://orcid.org/0000-0002-8400-7079

https://orcid.org/0000-0002-8400-7079

Where I am

The team, collaborations,

rney GALES INGLATERRA N
O’ Cork:

Delft QsPaises Bajos o/Bie

O Oxford
Cardiff© O Bristol © Londres Esseno 9 Dortmund
O/Disseldorf : 3
é o Coloni Thank you to our Sponsors, Supporters and Friends!
olonia . =
(e} : i |
Exeter, O Bournemouth &' Lieja : B rncensse Sty g T
o Plymouth e yel SIEM
@ ae \aMancha el (I;I j ¥ fathe = SoftBank
o 4 | 5 g
" &= 20 h 49 min = : amazo- ST UKA
1751 km)

Guernsey. o'Ruan — O Mar

\ Z) i %
Jersey 0 Caen ot £ %1/ i
Mar Céltico < : L = ‘B (s 1Y
| Versalles S@?aris 3 || — 4 -
O Saint-Malo Estrasburgo 5 { et) e
O Brest by 3 . . |
= O'Rennes Friburgo d Al \ f ! i
©.Quimper OjlleMans @ © Brisgovia ; \ ' | ¢ .
O Lorient ¢ . : ~ 1]
Q"Angers - " | | / . S & |
O Nantes R] — 9 ! A 7 |
A a - I \ 4 .
Les Sables-d'Olonne @ iti Francia O Lausana) g = A v 7

o LapBchelle GRUPO DE ROBOTICA

Pae s

Clermont-Ferrand O olyon

Golfo g , .
e 1,%9
s O Grenoble.
4;- OfAvifion =
o.Gijon ‘*t' . O Toulouse o Montpellier Ménaco
pldiconna Oviecoly Bilbao© g‘BI:SStilzéaﬁ 3 o.Carcasona © Marsella
0o Lugo
ﬂ: Vitoria-Gast';.1 Q :’::n\pTéna/\w_[\—\’_\ B pemiran
N Ando
ndorra

. O'. #.Aﬁﬁrgos i SN
a Vigo Go gle
f_AJ e A.Rirana

universidad
de ledn

GRUPO DE ROBOTICA

Outline

ntroduction
PDDL

1.

2

3. PDDL Elements
4. Planners
5
6
7.

. Exercises
. Takeaways
Acknowledgments

x
universidad
de ledn

Example

Someone wants to buy a mobile robot from the market and needs to choose
which one to purchase.

The decision maker knows how many robots are available but knows nothing
about a specific one until they examine it.

Upon examining specifications, the individual gains all the information
needed to evaluate its utility.

However, acquiring this information incurs a cost, such as time or mental
effort.

5

\\ v /
universidad
de ledn

Example

We can frame this situation as a simple optimal stopping problem.

The challenge is to determine the optimal point at which the decision
maker should stop searching and make a purchase.

In each moment t,, the decision maker is aware of the value of the best
option they have seen so far, the number of remaining alternatives, and the
cost of examining another option.

universidad
niver

gm

GRUPO DE ROBOTICA

Introduction

Architectures

’------------------------------------—

Deliberative
« Symbolic

| Ll « Sensor data to knowledge
* —
, Sense ﬂ) , Act » Knowledge base

» Planning

- Deliberative — Fikes

N

- . e o o oy
- e e o s .

’-------------------------------------

! Reactive i
1
[. : I .
. | Subsymbolic o Reactive — Brooks
I Sense €«——> Act » Coupling of perception and action |
[Concurrent condition-action rules
[» Faster |
! [

. . Hybrid — Arkin

’-------------------------------------

Hybrid

‘ Plan ‘ » Layered achitecture
 Deliberative layer
Sense Act » Reactive layer

N

Three Layers — Gat

- . e e o oy
- e e o = .

ﬁ Ingrand, F., & Ghallab, M. (2017). Deliberation for autonomous robots: A survey. Artificial Intelligence, 247, 10-44.httgs://d'oi.org/10.1016/'.artint.2014.11 .003
% Generacion de comportamientos en robots autbnomos mediante una arquitectura cognitiva hibrida, PhD Thesis, Miguel Angel Gonzalez Santamarta, https://dialnet.unirioja.es/servlet/tesis?codigo=325041 8

. "d p Reference: Kotseruba, I., Tsotsos, J.K. 40 years of cognitive architectures: core cognitive abilities and practical applications. Artif Intell Rev 53, 17-94 (2020). https://doi.org/10.1007/s10462-018-9646-y
universida
de ledn

https://doi.org/10.1016/j.artint.2014.11.003
https://dialnet.unirioja.es/servlet/tesis?codigo=325041
https://doi.org/10.1007/s10462-018-9646-y

GRUPO DE ROBOTICA

Introduction

Architectures

’------------------------------------—

- - N\
' Deliberative I
1 :
g S Symbolic '
| L 2 » Sensor data to knowledge !
I » Sense i Plan ,—» Act |
[, ; L « Knowledge base I
1 » Planning |
I [
\ - ,
I Reactive 1
1 :
; Subsymbolic :
I Sense €«——> Act » Coupling of perception and action |
1 , K » Concurrent condition-action rules |
I o Faster [
I [
\ - ,
’ L] - \
I — Hybrid i MERLIN 2
| . Plan ! i
an : MachinEd Ros pLaniN
! ; » Layered achitecture 1 P 9
: i « Deliberative layer 1
i 1
: Sense Act » Reactive layer ;
I ; [
N o e e e e e e e e e e e e - 7
ﬁ Ingrand, F., & Ghallab, M. (2017). Deliberation for autonomous robots: A survey. Artificial Intelligence, 247, 10-44 https://doi.org/10.1016/j.artint.2014.11.003
% Generacion de comportamientos en robots auténomos mediante una arquitectura cognitiva hibrida, PhD Thesis, Miguel Angel Gonzalez Santamarta, https:/dialnet.unirioja.es/servlet/tesis ?codigo=325041 9

. ”'d p Reference: Kotseruba, I., Tsotsos, J.K. 40 years of cognitive architectures: core cognitive abilities and practical applications. Artif Intell Rev 53, 17-94 (2020). https://doi.org/10.1007/s10462-018-9646-y
universida
de ledn

https://doi.org/10.1016/j.artint.2014.11.003
https://dialnet.unirioja.es/servlet/tesis?codigo=325041
https://doi.org/10.1007/s10462-018-9646-y

Introduction

Architectures

/home/miguel/ros2_ws/install/rb1_navigation/share/rb1_navigation/rviz/nav2_view.rviz* - RViz Bl @ vasvin viewer x I .

Eile Panels Help

< C @ localhost:5000 > BB ¢ »=00Q
P MoveCamera [JSelet -FocusCamera =oMeasure 7 20PoseEstimate @ PublishPoint 7 Navigation2 Goal @+ -

MERLIN2_EXECUTOR CHECK_WP

v!id
succgeded abortedcanceled

i

NAVIGATION DEMO_2_NODE

-,

@

i N

ﬁ O https://qithub.com/uleroboticsgroup/yasmin 0
R

Nt 2
universidad
de ledn

https://github.com/uleroboticsgroup/yasmin

Introduction

Hierarchical Architectures (aka: Deliberative, symbolic, classical...)

decide what
actions to take—l

determine situation

SENSE ACT
percep

de Buy Wenniger, Gideon Maillette, and Attila
Houtkooper. "GOAP." (2008).

universidad
de ledn

universidad The robot helps the operator to carry some luggage to a car which is parked outside.

http://www.youtube.com/watch?v=rNqv0gxIsZ8

Modelling the Problem

Carry My Luggage Example

e Main Goal
a. The robot helps the operator to carry a bag to a car parked outside.

e Optional Goals
a. Re-entering the arena
b. Following the queue on the way back to the arena

e Focus
a. Person following, navigation in unmapped environments, social navigation.
e Setup

a. Locations:

m The test takes place both inside and outside the Arena.

m The robot starts at a predefined location in the living room.
b. People: The operator is standing in front of the robot and is pointing at the bag to be carried outside.
c. Objects: At least two bags are placed near the operator (within a 2m distance and visible to the robot).

%

T/
universidad
de ledn

Modelling the Problem

Carry My Luggage Example

e Picking up the bag: The robot picks up the bag pointed at by the operator.

e Following the operator: The robot should inform the operator when it is ready to follow them.
The operator walks naturally towards the car; after reaching the car, the operator takes the bag
back and thanks the robot.

e Obstacles: The robot will face 4 obstacles along its way (in arbitrary order): (a) a small object on
the ground, (b) a hard-to-see object, (c) a crowd of people obstructing the path outside, and (d)
a small area blocked using retractable barriers.

Optional goals:

o Re-entering the arena: The robot returns to the arena, going back in through the
entrance.

o Following the queue: After the robot has reached the car, a few of the people that formed
the crowd obstructing the robot return to the arena in a queue. The robot can decide to
join the queue on its way back to the arena, in a manner that appears natural to the people
in the queue.

g Rulebook reference: https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1

universidad
de ledn

14

https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1

Modelling the Problem

Pednault’s example

Using an example from Pednault (1988), let's consider a scenario with a
single briefcase, B, that we want to use for transporting objects. Pednault
models this straightforward domain with three operators:

MovB (1) for moving the briefcase along with its contents,
PutIn(x) for placing an item X into the briefcase, and
TakeOut(x) for removing an item from the briefcase.

X
universidad
niver

gm

Modelling the Problem

Pednault’s example

TakeOut (x)

PRECOND :
EFFECTS :

PutIn{x.1)

PRECOND :
EFFECTS :

MovB(m,1)

PRECOND :
EFFECTS :

universidad
de ledn

X% B

—In(x)

x#£B A At(B,1) A At(x,1)
In(x)

At(B,m) Am#1

At(B,1)

At(z,1) Vz |In(z) A z#8B
—-At(B,m)

—At(z,m) Vz | In(z) A z #B

16

l I [] GRUPO DE ROBOTICA

PDDL

PDDL ("Planning Domain Definition Language") is an attempt to standardize planning domain
and problem description languages.

PDDL originated from the 1998 International Planning Competition (IPC) committee.
It aimed to promote empirical comparison between planning systems and benchmark diffusion.

PDDL has enhanced planning system evaluation and led to performance and expressivity
improvements.

It has become a standard language for planning domain description in IPC, with its collection of
domains serving as standard benchmarks.

It has facilitated the spread of planning techniques in various research and application
domains, where modeling and solving decision problems are challenging

g 17

T/
universidad
de ledn

Al Planning System vs Planner

e PDDL takes the problem's formalization, or model, as its input and employs various
problem-solving techniques such as heuristic search or propositional satisfiability
to derive a solution.

e Tasks such as transforming the model into a searchable space or logical reasoning
problem and devising efficient heuristics to tackle it, are challenges for the
planner's designer.

e The planner itself doesn't require knowledge of the specific problem description; it
can operate on any problem expressed in its modeling language.

e Not every planner can solve every problem it's given. This characteristic of
planners is termed domain-independence.

%

\\ v /
universidad
de ledn

Introduction
PDDL

Components of a PDDL planning task:

* Objects: Things in the world that interest us.

* Predicates: Properties of objects that we are interested in;
can be true or false.

* Initial state: The state of the world that we start in.

* Goal specification: Things that we want to be true.

* Actions/Operators: Ways of changing the state of the world.

19

%

\\ o /
universidad
de ledn

Introduction
PDDL Versions

PDDL 1.2 (1998-2000):
Official language of the 1st and 2nd IPC(International Planning Competition).
PDDL 2.1 (2002).
Introduced functions, durative actions, and plan metrics.
Extensions of PDDL 241:
PDDL+ (continuous changes and predictable exogenous events).
Mapl (Multi-Agent Planning Language).
Opt (Ontology with Polymorphic Types).
NDDL (2003):
Proposed by NASA, based on activities and constraints rather than states and actions.
PDDL 2.2 (2004):
Introduced axioms and timed predicates.
Ppddl (Probabilistic PDDL) for probabilistic effects.
PDDL (2006):
Introduced state-trajectory constraints and preferences.
Appl (Abstract Plan Preparation Language) proposed.
PDDL 3.1 (2008).
Introduces object-fluents.
Extensions: RDDL (Relational Dynamic Influence Diagram Language) and MA-PDDL (Multi-Agent PDDL).

20

GRUPO DE ROBOTICA

Introduction
History

PDDL 1.2 IPCA
(1998) (1998)
IPC 2

(2000)
PDDL 2.1 IPC 3

(2002)

PDDL + NDDL
(2002) (2002)
PDDL 2.2
(2004)
MAPL
(2003)
PPDL
(2004)
OPT
(2005)
APPL PDDL 3.0
(2006) (2006)
PDDL 3.1 o
Reference Pellier, Damien & Fiorino, Humbert. (2017). PDDL4J: a (2008)
planning domain description library for java. Journal of Experimental &
Theoretical Artificial Intelligence. 30. 1-34.
10.1080/0952813X.2017.1409278.
% RDDL
MA(ZE:E))DL (2011)

o 2

universidad
de ledn

PDDL Notation

Origin

® Notation BNF/EBNF
o It stands for Backus-Naur Form. It is a formal, mathematical way to specify context-free
grammars.
o ltis precise and unambiguous
o EBNF (Extended BNF) is widely used as the de facto standard to define programming languages

® Requirements
o Eachruleis of the form <syntactic element> ::= expansion.
Angle brackets (<>) delimit names of syntactic elements.
Square brackets ([]) surround optional material.
An asterisk (*) means “zero or more of”; a plus (+) means “one or more of”
Some syntactic elements are parameterized. E.g., <1list (symbol)> might denote a list of
symbols, where there is an EBNF definition for <1ist x> and a definition for <symbol>. The
former might look like <1list x> ::= (x*) so that a list of symbols is just <symbol>*.
o Ordinary parentheses are an essential part of the syntax we are defining and have no semantics
in the EBNF meta language.

o O O O

References:

; https://www.inf.ed.ac.uk/teaching/courses/propm/papers/ddl.html
g https://condor.depaul.edu/ichu/csc447/notes/wk3/BNF.pdf

univéEs dad http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/kovacs-pddI-3.1-2011.pdf

de ledn

22

https://www.inf.ed.ac.uk/teaching/courses/propm/papers/ddl.html
https://condor.depaul.edu/ichu/csc447/notes/wk3/BNF.pdf
http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/kovacs-pddl-3.1-2011.pdf

PDDL Notation

Origin

Optional elements are enclosed in square brackets ([])

Names, such as domain, predicate, action, etc., are typically comprised of alphanumeric
characters, hyphens (-), and underscores (_), although some planners may impose
restrictions.

Parameters of predicates and actions are identified by commencing with a question mark

(?).

In predicate declarations (the :predicates section), parameters serve solely to specify
the number of arguments for the predicate; hence, the specific parameter names are
inconsequential as long as they are unique.

Predicates can encompass zero parameters; however, in such cases, the predicate name
must still be encapsulated within parentheses.

g 23

\\ v /
universidad
de ledn

PDDL Notation

Issues

Most planners do not fully support all elements of any version of PDDL.

Additionally, many planners have unigque "features." For instance, they might misinterpret certain PDDL
constructs or require slight syntax variations that deviate from the official language specification.

Some planners implicitly require all arguments to an action to be distinct.

Some planners mandate that action preconditions and/or effects be written as conjunctions (i.e., as
(and ...)) even if the precondition/effect contains only one atomic condition or no condition at all.
Most planners ignore the :requirements section of the domain definition. However, some planners
may fail to parse a domain definition if this section is missing or contains an unrecognized keyword

%

\\ v /
universidad
de ledn

PDDL Notation

Tricks

Use the simplest constructs necessary to express the problem.
Read the documentation for the specific planner you intend to use.

X
universidad
ver

gm

References

Web Reference

The Al Planning &
PDDL Wiki

Planning.Wiki - The Al Planning & PDDL Wiki

Our Contributors: Adam Green, Benjamin Jacob Reji, ChrisE2018, Christian Muise, Enrico Scala, Felipe
Meneguzzi, Francisco Martin Rico, Henry Stairs, Jan Dolejsi, Mau Magnaguagno, Jonathan Mounty

Introduction

This Wiki is here to provide easy access to resources related to the field of Al Planning. Al Planning is
difficult to quantify under one roof, due to the variety of ongoing research in the field.

The International Conference on Autonomous Planning and Scheduling has in the course of
supporting Al Planning research created a competition for the Al Planning Software (Planners) that
have been built to solve Al Planning problems.

This competition, dating from 1998, has defined a general purpose definition language, Planning
Domain Definition Language (PDDL) , which is designed to be capable of
specifying any planning or scheduling problem you could come across.

In reality, PDDL since it's first incarnation in 1998 has had serious modifications to make it capable of
handling the complex tasks we expect of modern autonomous planning and scheduling techniques.

For more details on PDDL, Planning, the history, the usage and the research, see the guide.

= https://planning.wiki/
¥

universidad
de ledn

GRUPO DE ROBOTICA

26

https://planning.wiki/

References
Writing and Debugging PDDL

The main purpose of modelling planning problems in PDDL is to apply automated planning systems to
find solution plans.

http://planning.domains is an online repository of planning benchmark models, which also includes an
on-line editor with PDDL-specific features such as syntax highlighting and semi-automatic instantiation
of some common model patterns.

http://icaps-conference.org/index.php/Main/Competitions (the “deterministic” tracks). Each of the
competitions since 2008 has provided links to the source code of participating planning systems.
https://qithub.com/KCL-Planning/VAL : The VAL tool suite includes a PDDL syntax checker and a plan
validator. A plan validator is a tool that takes as input a problem definition (in PDDL) and a plan, and
determines if the plan solves the problem. Validating manually written plans can be a useful approach
to debug the problem definition. An alternative implementation of a plan validator for PDDL is INVAL
(https://github.com/patrikhaslum/INVAL).

universidad
de ledn

http://planning.domains
http://icaps-conference.org/index.php/Main/Competitions
https://github.com/KCL-Planning/VAL
https://github.com/patrikhaslum/INVAL

s
g
E
8
2
-]
2
&
°
4
S
z
&

Using PDDL

Parts of a PDDL

g 29

universidad
de ledn

PDDL elements

Domain

Domain

The domain definition includes the domain predicates and operators (referred to as actions
in PDDL). It may also encompass types (see Typing below), constants, static facts, and
various other elements. However, most planners do not support many of these features.

% 30

T/
universidad
de ledn

PDDL elements

Domain

(define (domain DOMAIN NAME)
(:requirements [:strips] [:equality] [:typing] [:adl])
(:predicates (PREDICATE 1 NAME ?Al ?A2 ... ?AN)
(PREDICATE 2 NAME ?A1 ?A2 ... ?AN)

)

(:action ACTION 1 NAME
[:parameters (?P1 ?P2 ... ?PN)]
[:precondition PRECOND FORMULA]
[:effect EFFECT FORMULA]

)

(:action ACTION 2 NAME
i)

universidad
de ledn

PDDL elements

Domain - Definition

The domain is defined with the (define (domain <name>) ...)
construct, where <name> is the identifier for the domain.

X
universidad
ver

gm

PDDL elements

Domain - Requirements

e The :requirements field specifies the features and constructs the domain uses,

©)

O

:st r‘ips This is the basic requirement for any PDDL domain. It stands for "Stanford Research Institute Problem Solver" and indicates
that the domain uses basic STRIPS-style operators. Allows for simple actions with preconditions and effects that involve adding or
deleting predicates.

. typing This requirement allows the use of types for objects, making the domain definition more expressive and structured.
Enables the declaration of different types of objects, which can help in organizing the domain and making the preconditions and effects
more readable.

: ad 1 stands for Action Description Language, an extension of PDDL (Planning Domain Definition Language) that allows for more
expressive planning problem definitions. ADL includes additional features that make it possible to describe more complex preconditions
and effects for actions, going beyond the capabilities of basic STRIPS operators.

. negat ive- pr‘econdit ions This requirement allows the use of types for objects, making the domain definition more
expressive and structured. Enables the declaration of different types of objects, which can help in organizing the domain and making
the preconditions and effects more readable.

. diSj unctive- pr'econdit ions Allows the use of disjunctions (logical OR) in the preconditions of actions. This
enables defining actions that can occur under multiple alternative conditions.Increases the flexibility in specifying when
actions can be taken.

:durative-actions allow for the modeling of actions that take time to execute, with conditions and effects specified
at different points in time

e Example: (:requirements :strips :typing :negative-preconditions)

%

\\ v /
universidad
de ledn

33

PDDL elements

Domain - Predicates

Except for the special predicate =, predicates in a domain definition have no intrinsic
meaning.

The :predicates section of a domain definition only specifies the names of the
predicates used in the domain and their number of arguments (and argument types if

the domain uses typing).

The "meaning" of a predicate—regarding which combinations of arguments it can be
true for and its relationship to other predicates—is determined by the effects that
actions in the domain have on the predicate and by which instances of the predicate
are listed as true in the initial state of the problem definition.

A distinction is commonly made between static and dynamic predicates: a static
predicate is not changed by any action.

% 34

\\ v /
universidad
de ledn

PDDL elements

Domain - Actions

Actions are the primary elements that define the possible operations within a planning
domain. Each action describes how the state of the world can change when the action is

executed. Actions consist of parameters, preconditions, and effects:
Parameters: The variables involved in the action.

Preconditions: Conditions that must hold true for the action to be performed.
Effects: Changes that occur as a result of the action.

All parts of an action definition except the name are optional (according to the PDDL
specification).

An action that has no preconditions some planners may require an "empty" precondition,
in the form :precondition() or :precondition(and), and some planners may also
require an empty :parameter list for actions without parameters).

g 35

T/
universidad
de ledn

universidad
de ledn

PDDL elements

Domain - Actions

(:action move
:parameters (?v - vehicle ?from - location ?to - location)
:precondition (and (at ?v ?from) (not (= ?from ?to)))
:effect (and (not (at ?v ?from)) (at ?v ?to)))

36

PDDL elements

Domain - Actions

STRIPS (Stanford Research Institute Problem Solver) is a simpler and more limited
planning language. It only allows conditions and effects as conjunctions of positive
literals or simple negations. It does not support disjunctions, quantifiers, or conditional
effects. It is easy to implement and widely supported by classical planners.

(:precondition (and (at robotl locl) (clear loc2)))

(:effect (and (not (at robotl locl)) (at robotl loc2)))

ADL (Action Description Language) extends STRIPS by offering greater
expressiveness: it allows disjunctions, complex negations, existential and
universal quantifiers, and conditional effects. This enables modeling more complex
domains, although not all planners support ADL directly.

(:precondition (or (has-key ?r) (knows-code ?r)))

(:effect (when (has-key ?r) (unlocked ?door)))

37

universidad
de ledn

PDDL elements

Domain - Actions

Feature

Conjunctions (and)
Disjunctions (or)

Complex negation (not, imply)
Quantifiers (forall, exists)
Conditional effects (when)
Object typing

Example planner

universidad
de ledn

STRIPS
Supported
¥ Not allowed
¥ Not allowed
¥ Not allowed
¥ Not allowed
Optional

Fast Downward, popf

ADL
Supported
Supported
Supported
Supported
Supported
Optional
VHPOP

38

%

\\ v /
universidad
de ledn

PDDL elements

Domain - Preconditions

Strips

An atomic formula:
(PREDICATE_NAME ARGl ... ARG _N)

The predicate arguments must be parameters of the action (or constants declared in the
domain, if the domain has constants).

A conjunction of atomic formulas:

(and ATOM1 ... ATOM_N)

ADL

A general negation, conjunction or

disjunction:

(not CONDITION_FORMULA)

(and CONDITION FORMULA1l ... CONDITION_FORMULA N)
(or CONDITION_FORMULA1 ... CONDITION_FORMULA_N)

A quantified formula:

(forall (?V1 ?V2 ...) CONDITION_FORMULA)
(exists (?V1 ?V2 ...) CONDITION_FORMULA)

39

PDDL elements

Domain - Effects

:effects describe how the state of the world changes as a result of an action being
executed. They specify which facts become true and which facts become false after the

action occurs. Effects can be simple (adding or deleting facts) or complex (conditional effects
that depend on certain conditions).

The effects of an action are not explicitly categorized as "adds" and "deletes."

Negative effects (deletes) are indicated by negation.

5

‘ 40
\\ v /
universidad
de ledn

%

\\ v /
universidad
de ledn

PDDL elements

Domain - Effect

Strips

An added atom:

(PREDICATE_NAME ARGl ... ARG_N)

The predicate arguments must be parameters of the action (or constants
declared in the domain, if the domain has constants).

A deleted atom:

(not (PREDICATE_NAME ARGl ... ARG _N))

A conjunction of atomic effects:

(and ATOM1 ... ATOM_N)

ADL

A conditional effect:

(when CONDITION FORMULA EFFECT_FORMULA)

The interpretation is that the specified effect takes place only if the
specified condition formula is true in the state where the action is executed.
Conditional effects are usually placed within quantifiers.

A universally quantified formula:

(forall (?V1 ?V2 ...) EFFECT_FORMULA)

4

PDDL elements

Domain - Example |

(define (domain logistics)

(:requirements :strips :typing :negative-preconditions :disjunctive-preconditions)

(:types robot location person)

(:predicates
(at ?obj - (either robot person) ?loc - location)
(in ?person - person ?robot - robot))

(:action move
:parameters (?v - robot ?from - location ?to - location)
:precondition (and (at ?v ?from) (not (= ?from ?to)))
:effect (and (not (at ?v ?from)) (at ?v ?to)))

(:action board
:parameters (?p - person ?v - robot ?loc - location)
:precondition (and (at ?p ?loc) (at ?v ?loc))
:effect (and (not (at ?p ?loc)) (in ?p ?v)))

(:action debark
:parameters (?p - person ?v - robot ?loc - location)
:precondition (in ?p ?v)
:effect (and (not (in ?p ?v)) (at ?p ?loc)))

(raction visit
:parameters (?p - person ?locl - location ?loc2 - location)
:precondition (or (at ?p ?locl) (at ?p ?loc2))

§§. :effect (and (not (at ?p ?locl)) (at ?p ?loc2)))
X

universidad
de ledn

PDDL elements

Problem

The problem definition contains the objects present in the problem instance, the initial state
description and the goal.

Key Components of a PDDL Problem File

Problem Definition: The problem file starts with a definition that includes the problem name and the
associated domain.

Objects: Declares the specific instances of the types defined in the domain.

Initial State: Describes the facts that are true at the beginning of the planning problem.

Goal State: Specifies the conditions that must be true for the problem to be considered solved.

% 43

T/
universidad
de ledn

PDDL elements

Problem

(define (problem PROBLEM NAME)
(:domain DOMAIN NAME)
(:objects 0BJ1 0BJ2 ... 0BJ N)
(:init ATOM1 ATOM2 ... ATOM N)
(:goal CONDITION FORMULA)

)

universidad
de ledn

<domain> = ine (domain <name>)
(def
[<extension-def>]
[<require-def>]
[<types-def>]:typing
[<constants-def>]
[<domain-vars-def>] :expression- evaluation
[<predicates-def>]
[<timeless-def>]
[< safety-def>] :safety- constraints
<structure-def>*)
extends <domain name>+)
requirements <require-key>+)

<extension-def> (:
(:
See Section 15
(:
(:

<require-def> g
<require-key> =
<types-def> o
<constants-def> 2
<domain-vars-def>

types <typed list (name)>)
constants <typed list (name)>)
ain-variables

(o | N I | | I

o
B

— s

<typed list(domain-var-declaration)>)

<predicates-def> ::= (:predicates <atomic formula skeleton>+)
<atomic formula skeleton>

::= (<predicate> <typed list (variable)>)
<name>
<name>
(:timeless <literal (name)>+)
<action-def>
::=:domain -axioms <axiom-def>
::=:action -expansions <method-def>

<predicate>
<variable>
<timeless-def>
<structure-def>
<structure-def>
<structure-def>

44

<action-def> = ion <action functor>
(:act
:parameters (<typed list (variable)>)
<action-def body>)
<action functor> ::= <name>
<action-def body> [:vars (<typed list(variable)>)]

:existential-preconditions
:conditional-effects

[:precondition <GD>]
[:expansion
<action SpeC>]:act1‘on- expansions
[:expansion :methOdS]:action- expansions
[:maintain <GD>]:action- expansions
[:effect <effect>]
[:only-in-expansions <boolean>]:action- expansions

| %
universidad
de ledn

PDDL elements

Problem

The initial state description (the :init section)is simply a list of all the ground
atoms that are true in the initial state. All other atoms are by definition false.

The :goal description is a formula of the same form as an action precondition.

All predicates used in the initial state and goal description should naturally be
declared in the corresponding domain.

The initial state and goal descriptions should be ground, meaning that all predicate
arguments should be object or constant names rather than parameters.

5

\\ v /
universidad
de ledn

PDDL elements

Problem
(define (problem logistics-problem-robot)

(:domain logistics)

(:objects
robotl robot2 - robot
locl loc2 loc3 - location
box1l box2 - object)

(:init
(at robotl locl)
(at robot2 loc2)
(at box1l locl)
(at box2 loc3))

(:goal
(and
(at robotl loc2)
(at box1l loc2)

ﬁ@ (at box2 locl)))

universidad)
de ledn

PDDL elements

Example

Exercises

Basic level
Description: Only PDDL exercises
Goal: Get familiar with PDDL formalism

Number: 1-5

X
universidad
ver

gm

Introduction

In the context of artificial intelligence and automated planning, is a software tool or system
designed to generate a sequence of actions to achieve a desired goal or set of goals in a given
environment or domain.

Planners are used in various applications where automated decision-making or task scheduling is
required, such as robotics, scheduling, logistics, and process automation.

There are a plethora of planners, sourced from both the latest International Planning Competition
(IPC), which have undergone rigorous testing and verification on standard planning competition
domains.

It's important to note that these planners are primarily state-of-the-art research prototypes, and
there is no absolute assurance of bug-free performance or flawless operation across all domains.

IPC labs serve as excellent environments for uncovering peculiar bugs within planners.

g 50

T/
universidad
de ledn

Introduction

Classical Planners: These planners operate on fully observable, deterministic planning
problems. They typically use search algorithms to explore the state space defined by
the initial and goal states and the available actions.

Probabilistic Planners: These planners handle uncertainty in the environment by
incorporating probabilistic models. They often use techniques such as Monte Carlo
methods or Markov Decision Processes (MDPs) to generate plans.

Temporal Planners: These planners handle temporal aspects of planning problems,
such as action durations, deadlines, and concurrency constraints. They often use
temporal reasoning techniques to generate plans.

g 51

T/
universidad
de ledn

Categories

Categories satisficing and optimizing
Optimizing planners aim at producing an optimal plan based on a predefined cost
function, regardless of the time required to generate it. This could involve minimizing
the number of actions or the total cost associated with executing the plan.
Satisficing planners prioritize efficiency, striving to generate a satisfactory plan within a
reasonable timeframe.
While an optimizing planner may prioritize speed over plan quality, this approach is
typically undesirable. A plan with a significantly higher cost but generated faster is
rarely preferable to a more efficient alternative.
Satisficing planners seek to strike a balance between time efficiency and plan quality.
Some employ heuristic methods to generate a single plan optimized for both criteria,
while others offer more flexibility, initially generating a plan and then refining it until
interrupted by the user.

universidad
de ledn

Classic Automated planning

Planning involves the strategic selection and arrangement of actions aimed at altering the states within a
system.

In modeling states and transitions, System) entails:

e A collection of states, denoted as S, which is recursively enumerable.

e A collection of actions, denoted as A, also recursively enumerable. These actions are under the control of the
planner and may include a "no-op" option.

e A set of events, denoted as E, similarly recursively enumerable. Unlike actions, events are beyond the control
of the planner and may include a neutral event, labeled as "e."
e A transition function, represented by
1 Y: SXAXE — 2°

mapping the combination of current state, action, and event to a subset of possible future states (25).

This function acknowledges that actions and events may sometimes be applied separately .

y: SX(AUE) — 2°

IE *Eence: http://ktiml.mff.cuni.cz/~bartak/AAAI2018/lecture.pdf 53
Nt 2

\

universidad
de ledn

http://ktiml.mff.cuni.cz/~bartak/AAAI2018/lecture.pdf

Plans

A plan in the context of PDDL is a sequence of actions that, when executed starting
from the initial state, leads to the achievement of the specified goals. Plans are
typically represented as a list of actions along with their parameters and conditions.

Rememberl!!;

e Action Sequence: The ordered sequence of actions that need to be executed.
e Action Parameters: The specific objects or entities involved in each action.
ePreconditions: Conditions that must be true before an action can be executed.
eEffects: Changes to the state of the world caused by executing an action.

% 54

\\ v /
universidad
de ledn

Resolution

The resolution to a planning dilemma manifests as a plan.
The characteristics of a plan:

Let's denote D as a domain definition and P as a problem definition within D. We'll utilize the subsequent
notation to reference the constituents of both the domain and the problem:

etypes(D) signifies the collection of type names specified in the :types section of D.

epredicates(D) indicates the predicates defined within D.

eactions (D) denotes the action schemas outlined in D.

eFor each action schema a in actions(D) , name(a) represents the action's name, and param(a) signifies the
sequence x1; ...; xk ofits parameters. For each parameter xi, type-of(xi) denotes the type name
declared for the i-th parameter of the action. If the parameter lacks a declared type, type-of(xi) is
designated as object. Similarly, name(p) and param(p) delineate the name and parameters, respectively, of
each predicate p within predicates(D) .

eobjects (D) denotes the collection of object names mentioned in the :objects section of P.

einit(D) encompasses the ground facts listed in the : init section of P.

egoal (D) represents the formula stated in the :goal section of P.

%

\\ v /
universidad
de ledn

Planners
Plan Validity

Plan validity refers to whether a generated plan is feasible and correct for solving the given planning
problem.

1. Satisfaction of Preconditions: Each action in the plan must have its preconditions satisfied in the
current state before it can be executed.

2. Consistency with Domain: The actions in the plan must adhere to the constraints and definitions
specified in the domain file, including types, predicates, and action definitions.

3. Achievement of Goals: The execution of the plan from the initial state should lead to the achievement
of the specified goals in the goal state.

4. Absence of Conflicts: Actions in the plan should not lead to conflicts or inconsistencies, such as
violating exclusivity constraints or causing state contradictions.

5. Resource Constraints: Plans should respect resource constraints, such as time, energy, or resource
availability, specified in the domain file.

g 56

T/
universidad
de ledn

Type Correctness

e If the domain doesn't define any type names, all objects default to the type
object. In such instances, there are no limitations on the objects that can be
substituted for parameters within an action schema to generate a ground action
instance.

e if the domain employs typing, a crucial requirement for a plan to be deemed
valid is that the objects used to instantiate the ground actions correspond
correctly to the types required by the action's parameters.
it's necessary to precisely define the relationship between objects and types.
Given that types in PDDL can establish a hierarchical structure, there exists a
subtype-supertype relationship among types, along with a mapping from objects
to their respective types.

universidad
de ledn

State Transitions

The actions outlined in a plan instigate alterations to the state.
Upon the plan's successful execution, the resultant state satisfies the
specified goal.

In the discrete and deterministic subset of PDDL, a state is characterized
by the collection of facts that hold true within it.

X
universidad
ver

gm

Non-sequential plans

There are also less strictly ordered forms of plans.

Lifting restrictions on the order of actions is important for scheduling a plan,
since it gives flexibility to place the actions in time.

%

\\ o /
universidad
de ledn

Planners
Algorithms

e The algorithms utilized in planning, aim to find viable routes or series of actions
enabling an agent to transition from an initial state to a desired goal state.

e These algorithms systematically explore the agent's environment, guided by a
defined strategy to devise a plan.

e Exploration entails methodically searching for feasible plans throughout various
states the agent may encounter.

e A state could represent the position and orientation of a robot or a specific
arrangement of tiles in an eight-puzzle scenario.

e A state space encompasses the entirety of potential states an agent can occupy
or reach when executing feasible actions from a given state.

% 60

universidad
de ledn

80

22 i

universidad
ver

Forward Search (Progression)

e Forward search is a method where the planner starts from the initial state and

applies actions to progress towards the goal state.
e This is a state-space search technique where each node in the search tree
represents a possible state of the world, and edges represent actions that

transition between states.

61

universidad
ver

gm

Forward Search (Progression)

Advantages:

e Forward search is correct (if it returns a plan, that plan is a valid solution).

e Forward search is complete (if a plan exists, the search will eventually find
it).

Disadvantages:

e High number of applicable actions at each state.
e Excessively large branching factor.
e Not feasible for plans with many steps.

62

Forward Search (Progression)

Key Concepts

Initial State: The starting point of the search, representing the current state of
the world.

Goal State: The target state that the planner aims to reach.

Actions: Operators defined in the PDDL domain that can change the state
when applied.

Preconditions: Conditions that must be true for an action to be applicable.
Effects: Changes that occur in the state after an action is applied.

63

X
universidad
ver

gm

Forward Search (Progression)

Steps in Forward Search

Initialization:
Start from the initial state as the root of the search tree.
Action Application:
For each current state, evaluate which actions are applicable based on their preconditions.
Apply applicable actions to generate successor states.
State Transition:
Transition to successor states by applying the effects of the actions.
Add the new states to the search tree as child nodes of the current state.
Goal Test:
Check if the current state satisfies the goal conditions.
If a goal state is reached, a plan (sequence of actions leading from the initial state to the goal state) is
found.
Search Strategy:
Use a specific search strategy to explore the search tree. Common strategies include breadth-first search,

g depth-first search, and heuristic-guided search (e.g., A").

universidad
de ledn

Planners

Forward Search (Progression)

PDDL Domain

(define (domain logistics)

(
(
(

)

*

universidad

de ledn

:requirements :strips :typing)
:types robot location object)

:predicates
(at ?obj - (either robot object) ?loc - location)
(holding ?r - robot ?obj - object))

:action move

:parameters (?r - robot ?from - location ?to - location)
:precondition (and (at ?r ?from) (not (= ?from ?to)))
:effect (and (not (at ?r ?from)) (at ?r ?to)))

:action pick up

:parameters (?r - robot ?obj - object ?loc - location)
:precondition (and (at ?r ?loc) (at ?obj ?loc))
:effect (and (not (at ?obj ?loc)) (holding ?r ?obj)))

:action put_down

:parameters (?r - robot ?obj - object ?loc - location)
:precondition (holding ?r ?obj)
:effect (and (not (holding ?r ?obj)) (at ?obj ?loc)))

PDDL Problem

(define (problem logistics-problem-robot)
(:domain logistics)
(:objects

robotl - robot
locl loc2 loc3 - location
box1l - object)
(:init
(at robotl locl)
(at box1 locl))
(:goal
(at box1l loc2))

65

Forward Search (Progression)

Progression Search Execution

Initial State:
robotl is at locl
box1 is at 1loc1l
No objects are being held
Possible Actions from Initial State:
(move robotl from locl to loc2)
(move robotl from locl to loc3)
(pick_up robotl boxl locl)
Apply (pick _up robotl box1l locl):
Preconditions: (at robotl locl), (at box1l locl) (both true)
Effects: (not (at box1 locl)), (holding robotl box1)
New State:
robotl is at locl

ﬁ . box1 is being held by robot1l
X 66

\J " //‘
universidad
de ledn

Forward Search (Progression)

Progression Search Execution

Possible Actions from New State:
(move robotl from locl to loc2)
(move robotl from locl to loc3)
(put_down robotl box1l locl)
Apply (move robotl from locl to loc2):
Preconditions: (at robotl locl), (not (= locl loc2)) (both true)
Effects: not (at robotl locl), (at robotl loc2)
New State:
robotl is at 1loc2
box1 is being held by robot1l
Possible Actions from New State:
(put_down robotl box1l loc2)
(move robotl from loc2 to locl)
g - (move robotl from loc2 to loc3)

\J " //‘
universidad
de ledn

Forward Search (Progression)

Progression Search Execution

Apply (put_down robotl boxl loc2):
Preconditions: (holding robotl box1) (true)
Effects: (not (holding robotl box1)), (at box1l loc2)
New State:
robotl is at 1loc2
box1 is at 1loc2
Goal Test:
Check if (at box1l loc2) is true in the current state.
Goal is satisfied. The plan is found.

Resulting Plan

Action 1: (pick_up robotl box1l locl)
Action 2: (move robotl locl loc2)
Action 3: (put_down robotl boxl loc2)

% This sequence of actions forms a valid plan to move box1 from loc1 to loc2.

universidad
de ledn

Backward Search (Regression Planning)

This reasoning method starts from the final goal and moves backward
through the rules and available knowledge to determine which facts or
conditions are necessary to achieve that goal.

Backward search operates from a conclusion to identify the necessary
premises that support it.

69

universidad
niver

gm

Backward Search (Regression Planning)

Advantages:

e Backward search is correct (if it returns a plan, that plan is a valid solution).

e Backward search is complete (if a plan exists, the search will eventually
find it).

Disadvantages:

e Although the branching factor is typically lower than in forward search, the
search space remains too large.

70

universidad
ver

gm

Planners

Comparison

Aspect

Start Point

Search Direction
Typical Use Case
Action Application

Efficiency

Complexity

universidad
de ledn

Forward Search (Progression)

Initial state

From initial state toward goal

Most search algorithms (DFS, BFS, A*, IDDFS)
Apply actions to generate successors

Efficient when branching factor is low near the root

Can be high if many irrelevant paths

Backward Search (Regression)

Goal state

From goal state toward initial

Planning problems where goal is well defined
Apply inverse actions to regress from goal

Efficient when goal is compact or has fewer preimages

May be lower if goal constraints prune the space

VA

Search Strategies

Breadth-First Search (BFS) explores and
traverses a search graph or tree. The algorithm
begins at a root node and explores all
neighboring nodes at the same level before
moving on to the next level of nodes.

%

universidad
de ledn

urgiversidad

Planners

Search Strategies

Depth-First Search (DFS) is a graph traversal
algorithm that explores as far as possible along
each branch before backtracking. It begins at a
root node (or any arbitrary node in a graph) and
uses a stack (explicitly or via recursion) to
remember the path, enabling it to backtrack when
it reaches a dead end.

O

73

Search Strategies

lterative Deepening Search (IDS) (aka Iterative Deepening Depth First
Search(IDDFS)) involves conducting a series of limited-depth searches, starting
with a depth limit of one and gradually increasing until a solution is found. In each
iteration, the algorithm performs a limited-depth search on the search tree up to
the current depth limit. If no solution is found, the depth limit is incremented by
one, and the search is performed again.

Depth

Iterative Deepening Depth First Search

0

0

1

0124

2

01352645

3

0135426451

The explanation of the above pattern is left to the readers.

https://www.geeksforgeeks.org/dsaliterative-deepening-searchids-iterative-deepening-depth-first-searchiddfs/

universidad
de ledn

° Level -0
c ° ° Level - 1
° ° e Level - 2

74

https://www.geeksforgeeks.org/dsa/iterative-deepening-searchids-iterative-deepening-depth-first-searchiddfs/

Planners

Comparison

Algorithm Time Complexity
DFS O(b9)
BFS O(bd)
IDDFS O(bd)

Space Complexity

O(d)

O(bd)

O(b-d)

b = branching factor d = depth of the shallowest solution

5
universidad
de ledn

When to Use

— When the solution is not necessarily close to the root
— When the graphl/tree is not very large or is finite

— When memory is not a constraint
— When you need the closest solution to the root

— When you want the benefits of BFS but have limited memory
— Acceptable if slightly slower performance is okay

75

Sussman Anomaly

A
B

R

Start State Goal State

%

T/
universidad
de ledn

Sussman Anomaly

Sussman Anomaly refers to a scenario in Al planning where a seemingly
straightforward problem-solving approach encounters unexpected complexity due
to the order of operators' application.

It was first described by Gerald Jay Sussman in his work on computer models of
physical systems.

A problem that appears simple can lead to a significantly longer solution path than
expected, mainly because of the interplay between parallel and sequential
execution of actions.

This anomaly highlights the importance of understanding the interactions between
different actions and their potential effects on the overall problem-solving process.

g 77

universidad
de ledn

Sussman Anomaly

il

——

Start State

o Goal State
% @ 78

universidad
de ledn

Session 4:
Task Planning and PDDL

ACM SIGSOFT Summer School for Software Engineering in Robotics

&6/2024

universidad
de ledn

Basic level
Description: Only PDDL exercises
Goal: Get familiar with PDDL formalism

Number: 1-5

X
universidad
ver

gm

Medium level: Plansys 2
Description: using PDDL with ROS 2 using Plansys 2

Goal: Get familiar with the integration and deployment of PDDL in ROS 2
environments

Number: 6

PlanSys
332 2

81

PlanSys2

History: RosPlan

domain/*

Problem
Interface

problem instance

Planner
Interface

planner output

state/*

The Knowledge Base is used to store a ——
PDDL model.

The Problem Interface is used to
generate a PDDL problem, publish it on a

problem_path

Knowledge
Base

topic, or write it to file. domain/*

The Planner Interface is used to call a stater” ARG
planner and publish the plan to a topic, or query_state

write it to file. plan
The Parsing Interface is used to convert o
a PDDL plan into ROS messages, ready i Dispatch

to be executed.
The Plan Dispatch encapsulates plan
execution

action feedback

action dispatch

%

universidad
de ledn

universidad
de ledn

Architecture

RosPlan

Loads a PDDL domain (and optionally
problem) from file.

Stores the state as a PDDL instance.
|s updated by ROS messages.

Can be queried.

83

GRUPO DE ROBOTICA

L s s - Topics

ArChiteCture Services

(" Adlient 4 PlanSys::

Actions

——
<t—>>
2\ P ——

Clients Wrappers

Application
i i (0 [C++ libs
L Action S)«‘\k Executor —
£ \ Execute Action 2 »p \
Action 2 rf“ =
. / - B Terminal
/ i \\\
Execute Plan Plan N
N Update
] N\ Notification
Planner

(Action N J“/
"
/

Application

Get/Update
Domain

Domain Expert

N

Topics

5

\\ v //
universidad
de ledn

PlanSys2

Elements

e Domain Expert: Contains the PDDL model information (types, predicates, functions, and
actions).

e Problem Expert: Contains the current instances, predicates, functions, and goals that
compose the model.

e Planner: Generates plans (sequence of actions) using the information contained in the
Domain and Problem Experts.

e Executor: Takes a plan and executes it by activating the action performers (the ROS2
nodes that implement each action).

E? 85
universidad
de ledn

PlanSys2

PlanSys CLI

e Interactive CLI to test and monitor the planning system
e Not required in production — used for testing and debugging
e The state is stored in the PlanSys2 components, not in the terminal

e You can open/close multiple terminal sessions freely

https://qithub.com/PlanSys2/ros2_planning_system/blob/rolling/plansys2_docs/tutorials/tut 1 _terminal.md

https://qithub.com/PlanSys2/ros2_planning_system_examples/tree/rolling

S

universidad
de ledn

86

https://github.com/PlanSys2/ros2_planning_system/blob/rolling/plansys2_docs/tutorials/tut_1_terminal.md
https://github.com/PlanSys2/ros2_planning_system_examples/tree/rolling

PlanSys2

CLI

0. Requisites:

Install PlanSys2 (see official docs)

Download the example domain:

wget -P /tmp
https://raw.githubusercontent.com/IntelligentRoboticsLabs/ros2_planning_s
ystem_examples/master/plansys2_simple_example/pddl/simple_example.pddl

1. Launch PlanSys2:
ros2 launch plansys2_bringup plansys2_bringup_launch_distributed.py
model_file:=/tmp/simple_example.pddl

¥ -

universidad
de ledn

¥

universidad
de ledn

PlanSys2

CLI

2. Launch the terminal in a new shell:
ros2 run plansys2_terminal plansys2_terminal

You will see:
ROS2 Planning System console. Type "quit" to finish

Tips:

e Arrow keys = command history
e TAB = autocompletion

e Citrl + D = quit

88

PlanSys2

CLI

Inspect the Domain

Check domain definition:
get domain

List elements:

get model types

get model predicates
get model actions

Get details:
get model predicate robot_at
get model action move

Define the Problem

Add instances:
set instance leia robot
set instance kitchen room

Add predicates (facts):
set predicate (connected kitchen dinning)
set predicate (robot_at leia entrance)

Define a goal:
set goal (and(robot_at leia bathroom))

89

PlanSys2

CLI

Generate the Plan

Compute a plan:
get plan

Example output:

(askcharge leia entrance chargingroom)
(charge leia chargingroom)

(move leia chargingroom kitchen)

Planner creates:

e /tmp/domain.pddl

e /tmp/problem.pddl

,. Optional — run manually:
% ros2 run popf popf /tmp/domain.pddl /tmp/problem.pddl

universidad
de ledn

PlanSys2

CLI

$ ros2 launch plansys2_bringup plansys2_bringup_launch_distributed.pymodel_file:=./domain.pddl

$ ros2 run plansys2_terminal plansys2_terminal --ros-args -p problem_file:=/problem.pdd|

5

\\ v //
universidad
de ledn

Exercises
Expert level: MERLIN 2

Description: using a complete Cognitive Architecture in ROS 2

Goal: Get familiar with Cognitive Architectures

Number: /7

92

universidad The robot helps the operator to carry some luggage to a car which is parked outside.

http://www.youtube.com/watch?v=rNqv0gxIsZ8

Modelling the Problem

Carry My Luggage Example

e Main Goal
a. The robot helps the operator to carry a bag to a car parked outside.

e Optional Goals
a. Re-entering the arena
b. Following the queue on the way back to the arena

e Focus
a. Person following, navigation in unmapped environments, social navigation.
e Setup

a. Locations:

m The test takes place both inside and outside the Arena.

m The robot starts at a predefined location in the living room.
b. People: The operator is standing in front of the robot and is pointing at the bag to be carried outside.
c. Objects: At least two bags are placed near the operator (within a 2m distance and visible to the robot).

¥

universidad
de ledn

Modelling the Problem

Carry My Luggage Example

Picking up the bag: The robot picks up the bag pointed at by the operator.

Following the operator: The robot should inform the operator when it is ready to follow them.
The operator walks naturally towards the car; after reaching the car, the operator takes the bag
back and thanks the robot.

Obstacles: The robot will face 4 obstacles along its way (in arbitrary order): (a) a small object on
the ground, (b) a hard-to-see object, (c) a crowd of people obstructing the path outside, and (d)
a small area blocked using retractable barriers.

Optional goals:

41 Re-entering the arena: The robot returns to the arena, going back in through the entrance.

4.2. Following the queue: After the robot has reached the car, a few of the people that formed the
crowd obstructing the robot return to the arena in a queue. The robot can decide to join the
queue on its way back to the arena, in a manner that appears natural to the people in the
queue.

% Rulebook reference: https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1

universidad
de ledn

95

https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1

universidad
de ledn

Architecture

MERLINZ2

Application System Structure J
<<part>>
MERLIN 2 core
bt
MERLIN 2 lication
/—fL_
<<part>>
<<part>> <<part>>
memory
action selection reasoning <<engine>>
MongoDB
<<model>> gine>> =]
<<model>> <<engine>> <<model>> <<engine>> .
— symbolic PDDL KANT - <<engine>>
Symbolic popf Symbolic popf
Planners Planners ROS2 Memory
i . <<model>> 9
<<model>> <<engine>> <<model>> <<engine>>
— — bsymboli FSM python
FSM YASMIN LLMs llama_ros BubamRcTe Blackboard
<<engine>>
<<model>> <<engine>> groot
Behavior Trees IBehavior Trees cpp/py) <<part>> <<part>>
<<engine>>
navigation explicability
YASMIN viewer
- separt= <<model>> <<model>> <<model>> <<engine>>
perception Planner Server inherent visualization Mongo Compass
<<engine>> interpretability
<<model>> <<engine>> nav2 N
|| <<model>> <<models>> <<model>> <<engine>>
compr::e d’ s‘;'swn YOLOvE.ROS Controller Server post-hoc lim's log ros2app 4
explainability interpreter system interpretability with
lim's
L | epartss <<model>> <<engine>> <<part>>
L localization amcl manipulation
<<model>> <<engine>> <<model>> <<engine>>
text to speech tts motion planning Movelt
<<model>> <<engine>>
speech recognition Whispper
model

GRUPO DE ROBOTICA

96

GRUPO DE ROBOTICA

Architecture
MERLINZ2

§ [] ros2Node
E Mission > Mission State
Layer Node O Machine
— Knowledge Base
; Communications
i ROS 2

Deliberative : <> Communications
—»| Executor |«
i Planning
i Layer
vYvY v \ 4
§ Knowledge . | PDDL — Plan
Base | |Generator Dispatcher
' A AR
§Executive Action2 Action3
i Layer

Behavioral ""
: \ 4 \ A A4
| Reactive 5 Speech Text to :
 Layor Navigation t6 Text Speech Perception

7
universidad
de ledn

GRUPO DE ROBOTICA

Architecture

M E R L I N 2 bdd Merlin2 Carry My Luqqage)
=i~ it ~
, Deliberative o \
; Mission Node |
1 |
I l' 1 I
| <<block>> |
11 Executor |
' |
<<block>> I l 1 l 1 1 |
Knowledge I <<block>> <<block>> <<block>> |
Base |<—+— _PDDL Planner Plan |
1 \ Generator Dispatcher
1 e St At SAGh At gt S gt gt et gt et ot gt angt et clioet s wees et ier o — 4
P AN T TR TR R R R T TR T R N TR T e =nd ~
\
/ 1 *
1 T 1 | <<block>> - \
| Action |
|
|
] | | |
I <<block>> <<block>> <<block>> <<block>> <<block>>
| | DetectBag | | Carry Bag Put Bag Follow Person Navigation '
| Action Action Action Action Action |
|
o ! f f i ,
' v
| <<block>> |
I Skills |
| |
|
o l 1
' <<block>> <<block>> <<block>> <<block>> <<block>> |
| Pointing Dialog Moveit Follow Navigation
\ /
7/
- Behavioral x#
* Formalizing Robotics Competitions: A practical case for RoboCup@Home Challenge Irene Gonzalez-Fernandez, Miguel A. Gonzalez-Santamarta, Claudia 98

univeiri's"i dad AIvarez—Aparicio, Juan Diego Pena Narvaez, Francisco Martin and Francisco J. Rodriguez-Lera |IEEE ICARSC 2024
de ledn

Architecture

Components

ibd Pointing_ROS2_module J

«ROS2_Node»
Ixtion

{Publishers ="

«Subscribe»| Image rgb

«ROS2_topic»
" = o

«Publish» Image rgb

Ixtion/rgb/image_raw
[sensor_msg/msg/Image),
Ixtion/rgb/camera_info
[sensor_msg/msg/Cameralnfo],|

Ixtion/depth/image_raw
[sensor_msg/msg/Image],
Irosout
[rel_interfaces/msg/Log] ",

«Publish»
Image depth

Subscribers="None",

Services="None"

}

I::| ROS2 Nodes

ROS2 Topics

Publi Camera Info

{Publisher_count="1",

Subscription_count="2",
Topic_type="sensor_msgs/msg/image"}

«ROS2_Node»
Ilyolo/yolov8_node

{Publishers ="

lyolo/detections
[vision_msg/msg/Detection2DArray],
lyolo/keypoints
[yolov8_msg/msg/PersonKeypoints2DArra
Irosout [rcl_interfaces/msg/Log] ",

Subscribers="
Ixtion/rgb/image_raw
[sensor_msgs/msg/image] ",

Services="
lyolo/enable [std_srvs/srv/SetBool] "}

«Subscribe»| Image rgb

N
«Publish» obj bbox

«ROS2_Node»
Ipoint_cloud_xyzrgb_node

{Publishers ="

Ixtion/depth/points
[sensor_msgs/msg/PointCloud2],
Jrosout [rel_interfaces/imsg/Log] ",

Ixtion/rgb/image_raw
[sensor_msgs/msg/image],
Ixtion/depth/image_raw
[sensor_msgs/msg/image),

«Subscribe»
«ROS2_topic» Image depth
)_raw
—
{Publisher_count="1",
Subscription_count="1",
Topic_type="sensor_msgs/msg/image"}
«Subscribe»
Camera Info
«ROS2_topic»
_info
P

{Publisher_count="1",
Subscription_count="1",
Topic_type="sensor_msgs/msg/Cameralinfo®}

Ixtion/rgb/camera_info
[sensor_msgs/msg/Cameralnfo] *,

Services="None"}

«ROS2_topic»
Iyolo/detections

{Publisher_count="1",
Subscription_count="1",

Topic_type="vision_msg/msg/Detection2DArray"}

«ROS2_topic»
Iyolo/keypoints
{Publisher_count="1",
Subscription_count="1",

person kpts Topic_type="

yolov8_msg/msg/PersonKeypoints2DArray"}

«ROS2_Noden
Iyolo/yolov8_3d_node

{Publishers ="

Iyolo/detections3d
[vision_msg/msg/Detection3DArray],
lyolo/keypoints3d

IJrosout [rcl_interfaces/msg/Log] ",

«PublishnIPoinlcloud

«ROS2_topic»
Ixtion/depth/points

{Publisher_count="1",
Subscription_count="1",
Topic_type=
"sensor_msgs/msg/PointCloud2"}

Subscribers="

lyolo/detections
[vision_msg/msg/Detection2DArray],
lyolo/keypoints

Ixtion/depth/points
[sensor_msgs/msg/PointCloud2] ",

Services="
lyolo/enable_3d [std_srvs/srv/SetBool] "}

[yolovB_msg/msg/PersonKeypoints3DArray] ,

«Subscribe»
person kpts

[yolov8_msg/msg/PersonKeypoints2DArray],

«Subscribe»
obj bbox

1

«ROS2_topic»
fyolo/keypoints3d

{Publisher_count="1",
Subscription_count="1",

Topic_type=
"yolov8_msgs/msg/PersonKeypoints3DArray}

I

«Subscribe»| person 3d kpts

«Subscribe» |object 3d bbox

«ROS2_Node»

{Publishers ="
Iyolo/markers

L o L4 S
;yololpoinling [yolov8_msgs/msg/Pointing]

:

«ROS2_topic»
Iyolo/detections3d

{Publisher_count="1",
Subscription_count="1",

Topic_type=
"vision_msgs/msg/Detection3DArray}

«Publish»
person 3d kpts

I

Irosout [rel_interfaces/msg/Log] ",

Subscribers="

Iyolo/keypoints3d
[yolov8_msgs/msg/PersonKeypoints3DArray]
Iyolo/detections3d
[vision_msg/msg/Detection3DArray] *,

Services="None"}

«Publish» object 3d bbox

«Subscribe»

Pointcloud

«Publish» |person kpts, object pointed
«ROS2_topic»
Iyolo/pointing
{Publisher_count="1",

Subscription_count="1",
Topic_type="yolov8_msgs/msg/Pointing"}

universidad
de ledn

Fprmalizing Robotics Competitions: A practical case for RoboCup@Home Challenge Irene Gonzalez-Fernandez, Miguel A. Gonzalez-Santamarta, Claudia
Alvarez-Aparicio, Juan Diego PefAa Narvaez, Francisco Martin and Francisco J. Rodriguez-Lera |IEEE ICARSC 2024

GRUPO DE ROBOTICA

99

Acknowledgement
DMARCE

MINISTERIO AGENCIA
DE CIENCIA, INNOVACION Fﬁ\;g#ﬁ%m
Y UNIVERSIDADES

Cofinanciado por
la Union Europea

DMARCE (EDMAR+CASCAR) Project PID2021-1265920B-C21 +
P1D2021-1265920B-C22 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A
way of making Europe

.

o 100

universidad
de ledn

GRUPO DE ROBOTICA

Acknowledgement
CORESENSE

CORESENSE Project

The Horizon Europe CORESENSE project GitHub organization

CORESENSE A2 29 followers 69 http://coresense.eu ™ info@coresense.eu

README . md

CoreSense Project

Welcome to the CoreSense Project Github organization!

See documentation at GitHub Pages.

Funded by
the European Union

The CoreSense Project is a research project funded by the European Commission Horizon Europe programme
though grant #101070254. Views and opinions expressed in this organization/repositories are however those of the
CoreSense partners only and do not necessarily reflect those of the European Commission or the Horizon Europe
programme. Neither the European Union nor the granting authority can be held responsible for them.

% 101

universidad
de ledn

Cognitive Architectures,
Task Planning and PDDL

ACM SIGSOFT Summer School for Software Engineering in Robotics
Delft (Netherlands)

o &mv,erSldad
v ledn

Francisco J. Rodriguez Lera

30/06/2025 102

