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Introduction

Someone wants to buy a mobile robot from the market and needs to choose 
which one to purchase. 

●The decision maker knows how many robots are available but knows nothing 
about a specific one until they examine it. 

●Upon examining specifications, the individual gains all the information 
needed to evaluate its utility. 

●However, acquiring this information incurs a cost, such as time or mental 
effort.
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Introduction

We can frame this situation as a simple optimal stopping problem. 

The challenge is to determine the optimal point at which the decision 
maker should stop searching and make a purchase.

In each moment tn,  the decision maker is aware of the value of the best 
option they have seen so far, the number of remaining alternatives, and the 
cost of examining another option. 
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https://github.com/uleroboticsgroup/yasmin

https://github.com/uleroboticsgroup/yasmin


Hierarchical Architectures  (aka: Deliberative, symbolic, classical…)
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The robot helps the operator to carry some luggage to a car which is parked outside.

http://www.youtube.com/watch?v=rNqv0gxIsZ8


Modelling the Problem

● Main Goal
a. The robot helps the operator to carry a bag to a car parked outside.

● Optional Goals
a. Re-entering the arena
b. Following the queue on the way back to the arena

● Focus
a. Person following, navigation in unmapped environments, social navigation.

● Setup
a. Locations:

■ The test takes place both inside and outside the Arena.
■ The robot starts at a predefined location in the living room.

b. People: The operator is standing in front of the robot and is pointing at the bag to be carried outside.
c. Objects: At least two bags are placed near the operator (within a 2m distance and visible to the robot).
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Carry My Luggage Example
2024
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Modelling the Problem
Carry My Luggage Example

● Picking up the bag: The robot picks up the bag pointed at by the operator.
● Following the operator: The robot should inform the operator when it is ready to follow them. 

The operator walks naturally towards the car; after reaching the car, the operator takes the bag 
back and thanks the robot.

● Obstacles: The robot will face 4 obstacles along its way (in arbitrary order): (a) a small object on 
the ground, (b) a hard-to-see object, (c) a crowd of people obstructing the path outside, and (d) 
a small area blocked using retractable barriers.

● Optional goals:
○ Re-entering the arena: The robot returns to the arena, going back in through the 

entrance.
○ Following the queue: After the robot has reached the car, a few of the people that formed 

the crowd obstructing the robot return to the arena in a queue. The robot can decide to 
join the queue on its way back to the arena, in a manner that appears natural to the people 
in the queue.

Rulebook reference: https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1

https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1


Modelling the Problem

Using an example from Pednault (1988), let's consider a scenario with a 
single briefcase, B, that we want to use for transporting objects. Pednault 
models this straightforward domain with three operators: 

●MovB(l) for moving the briefcase along with its contents, 
●PutIn(x) for placing an item x into the briefcase, and 
●TakeOut(x) for removing an item from the briefcase.
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Pednault’s example



Modelling the Problem
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● PDDL ("Planning Domain Definition Language") is an attempt to standardize planning domain 
and problem description languages. 

● PDDL originated from the 1998 International Planning Competition (IPC) committee.

● It aimed to promote empirical comparison between planning systems and benchmark diffusion.

● PDDL has enhanced planning system evaluation and led to performance and expressivity 
improvements.

● It has become a standard language for planning domain description in IPC, with its collection of 
domains serving as standard benchmarks.

● It has facilitated the spread of planning techniques in various research and application 
domains, where modeling and solving decision problems are challenging

Introduction
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Introduction

● PDDL takes the problem's formalization, or model, as its input and employs various 
problem-solving techniques such as heuristic search or propositional satisfiability 
to derive a solution.

● Tasks such as transforming the model into a searchable space or logical reasoning 
problem and devising efficient heuristics to tackle it, are challenges for the 
planner's designer.

● The planner itself doesn't require knowledge of the specific problem description; it 
can operate on any problem expressed in its modeling language.

● Not every planner can solve every problem it's given. This characteristic of 
planners is termed domain-independence.

18

AI Planning System vs Planner



19

Components of a PDDL planning task:

• Objects: Things in the world that interest us.
• Predicates: Properties of objects that we are interested in; 
can be true or false.
• Initial state: The state of the world that we start in.
• Goal specification: Things that we want to be true.
• Actions/Operators: Ways of changing the state of the world.

Introduction
PDDL



1. PDDL 1.2 (1998-2000):
○ Official language of the 1st and 2nd IPC(International Planning Competition).

2. PDDL 2.1 (2002):
○ Introduced functions, durative actions, and plan metrics.

3. Extensions of PDDL 2.1:
○ PDDL+ (continuous changes and predictable exogenous events).
○ Mapl (Multi-Agent Planning Language).
○ Opt (Ontology with Polymorphic Types).

4. NDDL (2003):
○ Proposed by NASA, based on activities and constraints rather than states and actions.

5. PDDL 2.2 (2004):
○ Introduced axioms and timed predicates.
○ Ppddl (Probabilistic PDDL) for probabilistic effects.

6. PDDL (2006):
○ Introduced state-trajectory constraints and preferences.
○ Appl (Abstract Plan Preparation Language) proposed.

7. PDDL 3.1 (2008):
○ Introduces object-fluents.
○ Extensions: RDDL (Relational Dynamic Influence Diagram Language) and MA-PDDL (Multi-Agent PDDL).

Introduction
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PDDL Versions



Introduction

Reference Pellier, Damien & Fiorino, Humbert. (2017). PDDL4J: a 
planning domain description library for java. Journal of Experimental & 
Theoretical Artificial Intelligence. 30. 1-34. 
10.1080/0952813X.2017.1409278.
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● Notation BNF/EBNF
○ It stands for Backus-Naur Form. It is a formal, mathematical way to specify context-free 

grammars.
○ It is precise and unambiguous
○ EBNF (Extended BNF) is widely used as the de facto standard to define programming languages

● Requirements
○ Each rule is of the form <syntactic element> ::= expansion.
○ Angle brackets (<>) delimit names of syntactic elements.
○ Square brackets ([]) surround optional material.
○ An asterisk (*) means “zero or more of”; a plus (+) means “one or more of.”
○ Some syntactic elements are parameterized. E.g., <list (symbol)> might denote a list of 

symbols, where there is an EBNF definition for <list x> and a definition for <symbol>. The 
former might look like <list x> ::= (x*) so that a list of symbols is just <symbol>*.

○ Ordinary parentheses are an essential part of the syntax we are defining and have no semantics 
in the EBNF meta language.

Origin

PDDL Notation
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References: 
https://www.inf.ed.ac.uk/teaching/courses/propm/papers/ddl.html
https://condor.depaul.edu/ichu/csc447/notes/wk3/BNF.pdf
http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/kovacs-pddl-3.1-2011.pdf

https://www.inf.ed.ac.uk/teaching/courses/propm/papers/ddl.html
https://condor.depaul.edu/ichu/csc447/notes/wk3/BNF.pdf
http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/kovacs-pddl-3.1-2011.pdf


● Optional elements are enclosed in square brackets ([])

● Names, such as domain, predicate, action, etc., are typically comprised of alphanumeric 
characters, hyphens (-), and underscores (_), although some planners may impose 
restrictions.

● Parameters of predicates and actions are identified by commencing with a question mark 
(?).

● In predicate declarations (the :predicates section), parameters serve solely to specify 
the number of arguments for the predicate; hence, the specific parameter names are 
inconsequential as long as they are unique.

● Predicates can encompass zero parameters; however, in such cases, the predicate name 
must still be encapsulated within parentheses.
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Most planners do not fully support all elements of any version of PDDL. 

Additionally, many planners have unique "features." For instance, they might misinterpret certain PDDL 
constructs or require slight syntax variations that deviate from the official language specification.

●Some planners implicitly require all arguments to an action to be distinct.
●Some planners mandate that action preconditions and/or effects be written as conjunctions (i.e., as 
(and ...)) even if the precondition/effect contains only one atomic condition or no condition at all.

●Most planners ignore the :requirements section of the domain definition. However, some planners 
may fail to parse a domain definition if this section is missing or contains an unrecognized keyword

24
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● Use the simplest constructs necessary to express the problem.
● Read the documentation for the specific planner you intend to use.
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Tricks

PDDL Notation



References

https://planning.wiki/
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Web Reference

https://planning.wiki/


References

The main purpose of modelling planning problems in PDDL is to apply automated planning systems to 
find solution plans. 

●http://planning.domains is an online repository of planning benchmark models, which also includes an 
on-line editor with PDDL-specific features such as syntax highlighting and semi-automatic instantiation 
of some common model patterns. 

●http://icaps-conference.org/index.php/Main/Competitions (the “deterministic” tracks). Each of the 
competitions since 2008 has provided links to the source code of participating planning systems. 

●https://github.com/KCL-Planning/VAL : The VAL tool suite includes a PDDL syntax checker and a plan 
validator. A plan validator is a tool that takes as input a problem definition (in PDDL) and a plan, and 
determines if the plan solves the problem. Validating manually written plans can be a useful approach 
to debug the problem definition. An alternative implementation of a plan validator for PDDL is INVAL 
(https://github.com/patrikhaslum/INVAL).
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Writing and Debugging PDDL

http://planning.domains
http://icaps-conference.org/index.php/Main/Competitions
https://github.com/KCL-Planning/VAL
https://github.com/patrikhaslum/INVAL
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Parts of a PDDL

Using PDDL
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● Domain

The domain definition includes the domain predicates and operators (referred to as actions 
in PDDL). It may also encompass types (see Typing below), constants, static facts, and 
various other elements. However, most planners do not support many of these features.

Domain

PDDL elements

30
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Domain

PDDL elements



● The domain is defined with the (define (domain <name>) ...) 
construct, where <name> is the identifier for the domain.
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Domain - Definition

PDDL elements



● The :requirements field specifies the features and constructs the domain uses, 
○ :strips This is the basic requirement for any PDDL domain. It stands for "Stanford Research Institute Problem Solver" and indicates 

that the domain uses basic STRIPS-style operators. Allows for simple actions with preconditions and effects that involve adding or 
deleting predicates.

○ :typing This requirement allows the use of types for objects, making the domain definition more expressive and structured. 
Enables the declaration of different types of objects, which can help in organizing the domain and making the preconditions and effects 
more readable.

○ :adl stands for Action Description Language, an extension of PDDL (Planning Domain Definition Language) that allows for more 
expressive planning problem definitions. ADL includes additional features that make it possible to describe more complex preconditions 
and effects for actions, going beyond the capabilities of basic STRIPS operators.

○ :negative-preconditions This requirement allows the use of types for objects, making the domain definition more 
expressive and structured. Enables the declaration of different types of objects, which can help in organizing the domain and making 
the preconditions and effects more readable.

○ :disjunctive-preconditions Allows the use of disjunctions (logical OR) in the preconditions of actions. This 
enables defining actions that can occur under multiple alternative conditions.Increases the flexibility in specifying when 
actions can be taken.

○ :durative-actions allow for the modeling of actions that take time to execute, with conditions and effects specified 
at different points in time

● Example: (:requirements :strips :typing :negative-preconditions)
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Domain - Requirements

PDDL elements



● Except for the special predicate =, predicates in a domain definition have no intrinsic 
meaning. 

● The :predicates section of a domain definition only specifies the names of the 
predicates used in the domain and their number of arguments (and argument types if 
the domain uses typing). 

● The "meaning" of a predicate—regarding which combinations of arguments it can be 
true for and its relationship to other predicates—is determined by the effects that 
actions in the domain have on the predicate and by which instances of the predicate 
are listed as true in the initial state of the problem definition.

● A distinction is commonly made between static and dynamic predicates: a static 
predicate is not changed by any action. 

34

Domain - Predicates

PDDL elements



● Actions are the primary elements that define the possible operations within a planning 
domain. Each action describes how the state of the world can change when the action is 
executed. Actions consist of parameters, preconditions, and effects:

○ Parameters: The variables involved in the action.
○ Preconditions: Conditions that must hold true for the action to be performed.
○ Effects: Changes that occur as a result of the action.

● All parts of an action definition except the name are optional (according to the PDDL 
specification). 

● An action that has no preconditions some planners may require an "empty" precondition, 
in the form :precondition() or :precondition(and), and some planners may also 
require an empty :parameter list for actions without parameters).

35

Domain - Actions

PDDL elements
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Domain - Actions

PDDL elements

(:action move
  :parameters (?v - vehicle ?from - location ?to - location)
  :precondition (and (at ?v ?from) (not (= ?from ?to)))
  :effect (and (not (at ?v ?from)) (at ?v ?to)))
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STRIPS (Stanford Research Institute Problem Solver) is a simpler and more limited 
planning language. It only allows conditions and effects as conjunctions of positive 
literals or simple negations. It does not support disjunctions, quantifiers, or conditional 
effects. It is easy to implement and widely supported by classical planners.

ADL (Action Description Language) extends STRIPS by offering greater 
expressiveness: it allows disjunctions, complex negations, existential and 
universal quantifiers, and conditional effects. This enables modeling more complex 
domains, although not all planners support ADL directly.

Domain - Actions

PDDL elements
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Feature STRIPS ADL

Conjunctions (and) ✅ Supported ✅ Supported

Disjunctions (or) ❌ Not allowed ✅ Supported

Complex negation (not, imply) ❌ Not allowed ✅ Supported

Quantifiers (forall, exists) ❌ Not allowed ✅ Supported

Conditional effects (when) ❌ Not allowed ✅ Supported

Object typing ✅ Optional ✅ Optional

Example planner Fast Downward, popf VHPOP

Domain - Actions

PDDL elements



Strips

●An atomic formula:
(PREDICATE_NAME ARG1 ... ARG_N)
The predicate arguments must be parameters of the action (or constants declared in the 
domain, if the domain has constants).

●A conjunction of atomic formulas:
(and ATOM1 ... ATOM_N)

39

ADL

●A general negation, conjunction or 
disjunction:
(not CONDITION_FORMULA)
(and CONDITION_FORMULA1 ... CONDITION_FORMULA_N)

(or CONDITION_FORMULA1 ... CONDITION_FORMULA_N)

●A quantified formula:
(forall (?V1 ?V2 ...) CONDITION_FORMULA)

(exists (?V1 ?V2 ...) CONDITION_FORMULA)

Domain - Preconditions

PDDL elements



:effects describe how the state of the world changes as a result of an action being 
executed. They specify which facts become true and which facts become false after the 
action occurs. Effects can be simple (adding or deleting facts) or complex (conditional effects 
that depend on certain conditions).

The effects of an action are not explicitly categorized as "adds" and "deletes."

Negative effects (deletes) are indicated by negation.

40

Domain - Effects

PDDL elements
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Strips

●An added atom:
(PREDICATE_NAME ARG1 ... ARG_N)
 The predicate arguments must be parameters of the action (or constants 
declared in the domain, if the domain has constants).

●A deleted atom:
(not (PREDICATE_NAME ARG1 ... ARG_N))

●A conjunction of atomic effects:
(and ATOM1 ... ATOM_N)

ADL

●A conditional effect:
(when CONDITION_FORMULA EFFECT_FORMULA)
The interpretation is that the specified effect takes place only if the 
specified condition formula is true in the state where the action is executed. 
Conditional effects are usually placed within quantifiers.

●A universally quantified formula:
(forall (?V1 ?V2 ...) EFFECT_FORMULA)

Domain - Effect

PDDL elements
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(define (domain logistics)
  (:requirements :strips :typing :negative-preconditions :disjunctive-preconditions)
  (:types robot location person)
  (:predicates
    (at ?obj - (either robot person) ?loc - location)
    (in ?person - person ?robot - robot))
  (:action move
    :parameters (?v - robot ?from - location ?to - location)
    :precondition (and (at ?v ?from) (not (= ?from ?to)))
    :effect (and (not (at ?v ?from)) (at ?v ?to)))
  (:action board
    :parameters (?p - person ?v - robot ?loc - location)
    :precondition (and (at ?p ?loc) (at ?v ?loc))
    :effect (and (not (at ?p ?loc)) (in ?p ?v)))
  (:action debark
    :parameters (?p - person ?v - robot ?loc - location)
    :precondition (in ?p ?v)
    :effect (and (not (in ?p ?v)) (at ?p ?loc)))
  (:action visit
    :parameters (?p - person ?loc1 - location ?loc2 - location)
    :precondition (or (at ?p ?loc1) (at ?p ?loc2))
    :effect (and (not (at ?p ?loc1)) (at ?p ?loc2)))
)

Domain - Example I

PDDL elements



The problem definition contains the objects present in the problem instance, the initial state 
description and the goal. 

Key Components of a PDDL Problem File

1.Problem Definition: The problem file starts with a definition that includes the problem name and the 
associated domain.

2.Objects: Declares the specific instances of the types defined in the domain.
3.Initial State: Describes the facts that are true at the beginning of the planning problem.
4.Goal State: Specifies the conditions that must be true for the problem to be considered solved.

43

Problem

PDDL elements



44

Problem

PDDL elements



45



● The initial state description (the :init section) is simply a list of all the ground 
atoms that are true in the initial state. All other atoms are by definition false. 

● The :goal description is a formula of the same form as an action precondition.

● All predicates used in the initial state and goal description should naturally be 
declared in the corresponding domain.

● The initial state and goal descriptions should be ground, meaning that all predicate 
arguments should be object or constant names rather than parameters. 
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Problem

PDDL elements
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Problem

PDDL elements
(define (problem logistics-problem-robot)
  (:domain logistics)
  
  (:objects
    robot1 robot2 - robot
    loc1 loc2 loc3 - location
    box1 box2 - object)

  (:init
    (at robot1 loc1)
    (at robot2 loc2)
    (at box1 loc1)
    (at box2 loc3))

  (:goal
    (and
      (at robot1 loc2)
      (at box1 loc2)
      (at box2 loc1)))
)
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Example

PDDL elements



Description: Only PDDL exercises

Goal: Get familiar with PDDL formalism

Number: 1-5

49

Exercises
Basic level 



Planners

● In the context of artificial intelligence and automated planning, is a software tool or system 
designed to generate a sequence of actions to achieve a desired goal or set of goals in a given 
environment or domain. 

● Planners are used in various applications where automated decision-making or task scheduling is 
required, such as robotics, scheduling, logistics, and process automation.

● There are a plethora of planners, sourced from both the latest International Planning Competition 
(IPC), which have undergone rigorous testing and verification on standard planning competition 
domains.

● It's important to note that these planners are primarily state-of-the-art research prototypes, and 
there is no absolute assurance of bug-free performance or flawless operation across all domains.

● IPC labs serve as excellent environments for uncovering peculiar bugs within planners.

50

Introduction



Planners

● Classical Planners: These planners operate on fully observable, deterministic planning 
problems. They typically use search algorithms to explore the state space defined by 
the initial and goal states and the available actions.

● Probabilistic Planners: These planners handle uncertainty in the environment by 
incorporating probabilistic models. They often use techniques such as Monte Carlo 
methods or Markov Decision Processes (MDPs) to generate plans.

● Temporal Planners: These planners handle temporal aspects of planning problems, 
such as action durations, deadlines, and concurrency constraints. They often use 
temporal reasoning techniques to generate plans.

51

Introduction



● Categories satisficing and optimizing
○ Optimizing planners aim at producing an optimal plan based on a predefined cost 

function, regardless of the time required to generate it. This could involve minimizing 
the number of actions or the total cost associated with executing the plan.

○ Satisficing planners prioritize efficiency, striving to generate a satisfactory plan within a 
reasonable timeframe.

○ While an optimizing planner may prioritize speed over plan quality, this approach is 
typically undesirable. A plan with a significantly higher cost but generated faster is 
rarely preferable to a more efficient alternative.

○ Satisficing planners seek to strike a balance between time efficiency and plan quality. 
Some employ heuristic methods to generate a single plan optimized for both criteria, 
while others offer more flexibility, initially generating a plan and then refining it until 
interrupted by the user.

52

Planners
Categories



Planning involves the strategic selection and arrangement of actions aimed at altering the states within a 
system.

In modeling states and transitions, System ∑ entails:

●A collection of states, denoted as S, which is recursively enumerable.
●A collection of actions, denoted as A, also recursively enumerable. These actions are under the control of the 

planner and may include a "no-op" option.
●A set of events, denoted as E, similarly recursively enumerable. Unlike actions, events are beyond the control 

of the planner and may include a neutral event, labeled as "e."
●A transition function, represented by 

mapping the combination of current state, action, and event to a subset of possible future states (2S). 

This function acknowledges that actions and events may sometimes be applied separately .

53

Planners
Classic Automated planning

Reference: http://ktiml.mff.cuni.cz/~bartak/AAAI2018/lecture.pdf

http://ktiml.mff.cuni.cz/~bartak/AAAI2018/lecture.pdf


A plan in the context of PDDL is a sequence of actions that, when executed starting 
from the initial state, leads to the achievement of the specified goals. Plans are 
typically represented as a list of actions along with their parameters and conditions.

Remember!!:

●Action Sequence: The ordered sequence of actions that need to be executed.
●Action Parameters: The specific objects or entities involved in each action.
●Preconditions: Conditions that must be true before an action can be executed.
●Effects: Changes to the state of the world caused by executing an action.

54

Planners
Plans



Planners

The resolution to a planning dilemma manifests as a plan. 
The characteristics of a plan:

Let's denote D as a domain definition and P as a problem definition within D. We'll utilize the subsequent 
notation to reference the constituents of both the domain and the problem:

●types(D) signifies the collection of type names specified in the :types section of D.
●predicates(D) indicates the predicates defined within D.
●actions(D) denotes the action schemas outlined in D. 
●For each action schema a in actions(D) , name(a) represents the action's name, and param(a) signifies the 

sequence x1; ...; xk of its parameters. For each parameter xi, type-of(xi) denotes the type name 
declared for the i-th parameter of the action. If the parameter lacks a declared type, type-of(xi) is 
designated as object. Similarly, name(p) and param(p) delineate the name and parameters, respectively, of 
each predicate p within predicates(D) .

●objects(D) denotes the collection of object names mentioned in the :objects section of P.
●init(D) encompasses the ground facts listed in the :init section of P.
●goal(D) represents the formula stated in the :goal section of P.
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Resolution



Planners

Plan validity refers to whether a generated plan is feasible and correct for solving the given planning 
problem.

1. Satisfaction of Preconditions:  Each action in the plan must have its preconditions satisfied in the 
current state before it can be executed.

2. Consistency with Domain: The actions in the plan must adhere to the constraints and definitions 
specified in the domain file, including types, predicates, and action definitions.

3. Achievement of Goals: The execution of the plan from the initial state should lead to the achievement 
of the specified goals in the goal state.

4. Absence of Conflicts: Actions in the plan should not lead to conflicts or inconsistencies, such as 
violating exclusivity constraints or causing state contradictions.

5. Resource Constraints: Plans should respect resource constraints, such as time, energy, or resource 
availability, specified in the domain file.
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Plan Validity



● If the domain doesn't define any type names, all objects default to the type 
object. In such instances, there are no limitations on the objects that can be 
substituted for parameters within an action schema to generate a ground action 
instance. 

● if the domain employs typing, a crucial requirement for a plan to be deemed 
valid is that the objects used to instantiate the ground actions correspond 
correctly to the types required by the action's parameters.

● it's necessary to precisely define the relationship between objects and types. 
● Given that types in PDDL can establish a hierarchical structure, there exists a 

subtype-supertype relationship among types, along with a mapping from objects 
to their respective types. 
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Planners
Type Correctness



● The actions outlined in a plan instigate alterations to the state. 
● Upon the plan's successful execution, the resultant state satisfies the 

specified goal. 
● In the discrete and deterministic subset of PDDL, a state is characterized 

by the collection of facts that hold true within it.
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There are also less strictly ordered forms of plans. 

Lifting restrictions on the order of actions is important for scheduling a plan, 
since it gives flexibility to place the actions in time. 
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● The algorithms utilized in planning, aim to find viable routes or series of actions 
enabling an agent to transition from an initial state to a desired goal state. 

● These algorithms systematically explore the agent's environment, guided by a 
defined strategy to devise a plan. 

● Exploration entails methodically searching for feasible plans throughout various 
states the agent may encounter. 

● A state could represent the position and orientation of a robot or a specific 
arrangement of tiles in an eight-puzzle scenario. 

● A state space encompasses the entirety of potential states an agent can occupy 
or reach when executing feasible actions from a given state.
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Forward Search (Progression)

● Forward search is a method where the planner starts from the initial state and 
applies actions to progress towards the goal state. 

● This is a state-space search technique where each node in the search tree 
represents a possible state of the world, and edges represent actions that 
transition between states.



Advantages:

● Forward search is correct (if it returns a plan, that plan is a valid solution).
● Forward search is complete (if a plan exists, the search will eventually find 

it). 

Disadvantages:

● High number of applicable actions at each state.
● Excessively large branching factor.
● Not feasible for plans with many steps.
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Key Concepts

1.Initial State: The starting point of the search, representing the current state of 
the world.

2.Goal State: The target state that the planner aims to reach.
3.Actions: Operators defined in the PDDL domain that can change the state 
when applied.

4.Preconditions: Conditions that must be true for an action to be applicable.
5.Effects: Changes that occur in the state after an action is applied.
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Steps in Forward Search

1.Initialization:
○ Start from the initial state as the root of the search tree.

2.Action Application:
○ For each current state, evaluate which actions are applicable based on their preconditions.
○ Apply applicable actions to generate successor states.

3.State Transition:
○ Transition to successor states by applying the effects of the actions.
○ Add the new states to the search tree as child nodes of the current state.

4.Goal Test:
○ Check if the current state satisfies the goal conditions.
○ If a goal state is reached, a plan (sequence of actions leading from the initial state to the goal state) is 

found.
5.Search Strategy:

○ Use a specific search strategy to explore the search tree. Common strategies include breadth-first search, 
depth-first search, and heuristic-guided search (e.g., A*).
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(define (domain logistics)
  (:requirements :strips :typing)
  (:types robot location object)
  (:predicates

(at ?obj - (either robot object) ?loc - location)
(holding ?r - robot ?obj - object))

  (:action move
:parameters (?r - robot ?from - location ?to - location)
:precondition (and (at ?r ?from) (not (= ?from ?to)))
:effect (and (not (at ?r ?from)) (at ?r ?to)))

  (:action pick_up
:parameters (?r - robot ?obj - object ?loc - location)
:precondition (and (at ?r ?loc) (at ?obj ?loc))
:effect (and (not (at ?obj ?loc)) (holding ?r ?obj)))

  (:action put_down
:parameters (?r - robot ?obj - object ?loc - location)
:precondition (holding ?r ?obj)
:effect (and (not (holding ?r ?obj)) (at ?obj ?loc)))

)

(define (problem logistics-problem-robot)
  (:domain logistics)
  (:objects
    robot1 - robot
    loc1 loc2 loc3 - location
    box1 - object)
  (:init
    (at robot1 loc1)
    (at box1 loc1))
  (:goal
    (at box1 loc2))
)

PDDL Domain PDDL Problem

Planners
Forward Search (Progression)
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Progression Search Execution

1.Initial State:
○ robot1 is at loc1
○ box1 is at loc1
○ No objects are being held

2.Possible Actions from Initial State:
○ (move robot1 from loc1 to loc2)

○ (move robot1 from loc1 to loc3)

○ (pick_up robot1 box1 loc1)

3.Apply (pick_up robot1 box1 loc1):
○ Preconditions: (at robot1 loc1), (at box1 loc1) (both true)
○ Effects: (not (at box1 loc1)), (holding robot1 box1)
○ New State:

■ robot1 is at loc1
■ box1 is being held by robot1

Planners
Forward Search (Progression)
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Progression Search Execution

4.Possible Actions from New State:
○ (move robot1 from loc1 to loc2)

○ (move robot1 from loc1 to loc3)

○ (put_down robot1 box1 loc1)

5.Apply (move robot1 from loc1 to loc2):
○ Preconditions: (at robot1 loc1), (not (= loc1 loc2)) (both true)
○ Effects: not (at robot1 loc1), (at robot1 loc2)
4. New State:

4. robot1 is at loc2
■ box1 is being held by robot1

•Possible Actions from New State:
○ (put_down robot1 box1 loc2)

○ (move robot1 from loc2 to loc1)

○ (move robot1 from loc2 to loc3)

Planners
Forward Search (Progression)
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Progression Search Execution

7.Apply (put_down robot1 box1 loc2):
○ Preconditions: (holding robot1 box1) (true)
○ Effects: (not (holding robot1 box1)), (at box1 loc2)
○ New State:

■ robot1 is at loc2
7. box1 is at loc2

•Goal Test:
○ Check if (at box1 loc2) is true in the current state.
○ Goal is satisfied. The plan is found.

Resulting Plan

7.Action 1: (pick_up robot1 box1 loc1)
•Action 2: (move robot1 loc1 loc2)
•Action 3: (put_down robot1 box1 loc2)

This sequence of actions forms a valid plan to move box1 from loc1 to loc2.

Planners
Forward Search (Progression)



This reasoning method starts from the final goal and moves backward 
through the rules and available knowledge to determine which facts or 
conditions are necessary to achieve that goal. 

Backward search operates from a conclusion to identify the necessary 
premises that support it.
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Advantages:

● Backward search is correct (if it returns a plan, that plan is a valid solution).
● Backward search is complete (if a plan exists, the search will eventually 

find it). 

Disadvantages:

● Although the branching factor is typically lower than in forward search, the 
search space remains too large.
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Planners
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Aspect Forward Search (Progression) Backward Search (Regression)

Start Point Initial state Goal state

Search Direction From initial state toward goal From goal state toward initial

Typical Use Case Most search algorithms (DFS, BFS, A*, IDDFS) Planning problems where goal is well defined

Action Application Apply actions to generate successors Apply inverse actions to regress from goal

Efficiency Efficient when branching factor is low near the root Efficient when goal is compact or has fewer preimages

Complexity Can be high if many irrelevant paths May be lower if goal constraints prune the space

Comparison

Planners



Breadth-First Search (BFS) explores and 
traverses a search graph or tree. The algorithm 
begins at a root node and explores all 
neighboring nodes at the same level before 
moving on to the next level of nodes. 
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Depth-First Search (DFS) is a graph traversal 
algorithm that explores as far as possible along 
each branch before backtracking. It begins at a 
root node (or any arbitrary node in a graph) and 
uses a stack (explicitly or via recursion) to 
remember the path, enabling it to backtrack when 
it reaches a dead end.
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Iterative Deepening Search (IDS) (aka Iterative Deepening Depth First 
Search(IDDFS) ) involves conducting a series of limited-depth searches, starting 
with a depth limit of one and gradually increasing until a solution is found. In each 
iteration, the algorithm performs a limited-depth search on the search tree up to 
the current depth limit. If no solution is found, the depth limit is incremented by 
one, and the search is performed again.
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https://www.geeksforgeeks.org/dsa/iterative-deepening-searchids-iterative-deepening-depth-first-searchiddfs/

https://www.geeksforgeeks.org/dsa/iterative-deepening-searchids-iterative-deepening-depth-first-searchiddfs/
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Algorithm Time Complexity Space Complexity When to Use

DFS O(bᵈ) O(d) – When the solution is not necessarily close to the root
– When the graph/tree is not very large or is finite

BFS O(bᵈ) O(bᵈ) – When memory is not a constraint
– When you need the closest solution to the root

IDDFS O(bᵈ) O(b·d) – When you want the benefits of BFS but have limited memory
– Acceptable if slightly slower performance is okay

Planners
Comparison

b = branching factor  d = depth of the shallowest solution



76

Planners
Sussman Anomaly



Sussman Anomaly refers to a scenario in AI planning where a seemingly 
straightforward problem-solving approach encounters unexpected complexity due 
to the order of operators' application. 

It was first described by Gerald Jay Sussman in his work on computer models of 
physical systems.

A problem that appears simple can lead to a significantly longer solution path than 
expected, mainly because of the interplay between parallel and sequential 
execution of actions. 

This anomaly highlights the importance of understanding the interactions between 
different actions and their potential effects on the overall problem-solving process.
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Session 4: 
Task Planning and PDDL

ACM SIGSOFT Summer School for Software Engineering in Robotics

7906/06/2024



Description: Only PDDL exercises

Goal: Get familiar with PDDL formalism

Number: 1-5
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Exercises
Medium level: Plansys 2

Description: using  PDDL with ROS 2 using Plansys 2

 

Goal: Get familiar with the integration and deployment of PDDL in ROS 2 
environments

Number: 6
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PlanSys2
History: RosPlan

● The Knowledge Base is used to store a 
PDDL model.

● The Problem Interface is used to 
generate a PDDL problem, publish it on a 
topic, or write it to file.

● The Planner Interface is used to call a 
planner and publish the plan to a topic, or 
write it to file.

● The Parsing Interface is used to convert 
a PDDL plan into ROS messages, ready 
to be executed.

● The Plan Dispatch encapsulates plan 
execution
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Architecture
RosPlan

● Loads a PDDL domain (and optionally 
problem) from file.

● Stores the state as a PDDL instance.
● Is updated by ROS messages.
● Can be queried.
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PlanSys2
Architecture
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● Domain Expert: Contains the PDDL model information (types, predicates, functions, and 
actions).

● Problem Expert: Contains the current instances, predicates, functions, and goals that 
compose the model.

● Planner: Generates plans (sequence of actions) using the information contained in the 
Domain and Problem Experts.

● Executor: Takes a plan and executes it by activating the action performers (the ROS2 
nodes that implement each action).

PlanSys2
Elements
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● Interactive CLI to test and monitor the planning system

● Not required in production — used for testing and debugging

● The state is stored in the PlanSys2 components, not in the terminal

● You can open/close multiple terminal sessions freely

PlanSys2
PlanSys CLI

https://github.com/PlanSys2/ros2_planning_system/blob/rolling/plansys2_docs/tutorials/tut_1_terminal.md
https://github.com/PlanSys2/ros2_planning_system_examples/tree/rolling

https://github.com/PlanSys2/ros2_planning_system/blob/rolling/plansys2_docs/tutorials/tut_1_terminal.md
https://github.com/PlanSys2/ros2_planning_system_examples/tree/rolling
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0. Requisites:
 Install PlanSys2 (see official docs)
 Download the example domain:
 wget -P /tmp 
https://raw.githubusercontent.com/IntelligentRoboticsLabs/ros2_planning_s
ystem_examples/master/plansys2_simple_example/pddl/simple_example.pddl

1. Launch PlanSys2:
 ros2 launch plansys2_bringup plansys2_bringup_launch_distributed.py 
model_file:=/tmp/simple_example.pddl

PlanSys2
CLI
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PlanSys2
CLI

2. Launch the terminal in a new shell:
 ros2 run plansys2_terminal plansys2_terminal

You will see:
 ROS2 Planning System console. Type "quit" to finish

Tips:

● Arrow keys = command history

● TAB = autocompletion

● Ctrl + D = quit
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PlanSys2
CLI

Inspect the Domain

Check domain definition:
 get domain

List elements:
 get model types
 get model predicates
 get model actions

Get details:
 get model predicate robot_at
 get model action move

Define the Problem

Add instances:
 set instance leia robot
 set instance kitchen room
 ...

Add predicates (facts):
 set predicate (connected kitchen dinning)
 set predicate (robot_at leia entrance)
 ...

Define a goal:
 set goal (and(robot_at leia bathroom))
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PlanSys2
CLI

Generate the Plan

Compute a plan:
 get plan

Example output:
 (askcharge leia entrance chargingroom)
 (charge leia chargingroom)
 (move leia chargingroom kitchen)
 ...

Planner creates:

● /tmp/domain.pddl

● /tmp/problem.pddl

Optional – run manually:
 ros2 run popf popf /tmp/domain.pddl /tmp/problem.pddl
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$ ros2 launch plansys2_bringup plansys2_bringup_launch_distributed.pymodel_file:=./domain.pddl

$ ros2 run plansys2_terminal plansys2_terminal --ros-args -p problem_file:=/problem.pddl

PlanSys2
CLI
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Exercises
Expert level: MERLIN 2

Description: using  a complete Cognitive Architecture in ROS 2 

 

Goal: Get familiar with Cognitive Architectures

Number: 7
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The robot helps the operator to carry some luggage to a car which is parked outside.

http://www.youtube.com/watch?v=rNqv0gxIsZ8


Modelling the Problem

● Main Goal
a. The robot helps the operator to carry a bag to a car parked outside.

● Optional Goals
a. Re-entering the arena
b. Following the queue on the way back to the arena

● Focus
a. Person following, navigation in unmapped environments, social navigation.

● Setup
a. Locations:

■ The test takes place both inside and outside the Arena.
■ The robot starts at a predefined location in the living room.

b. People: The operator is standing in front of the robot and is pointing at the bag to be carried outside.
c. Objects: At least two bags are placed near the operator (within a 2m distance and visible to the robot).

94

Carry My Luggage Example
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Modelling the Problem
Carry My Luggage Example

1. Picking up the bag: The robot picks up the bag pointed at by the operator.
2. Following the operator: The robot should inform the operator when it is ready to follow them. 

The operator walks naturally towards the car; after reaching the car, the operator takes the bag 
back and thanks the robot.

3. Obstacles: The robot will face 4 obstacles along its way (in arbitrary order): (a) a small object on 
the ground, (b) a hard-to-see object, (c) a crowd of people obstructing the path outside, and (d) 
a small area blocked using retractable barriers.

4. Optional goals:
4.1. Re-entering the arena: The robot returns to the arena, going back in through the entrance.
4.2. Following the queue: After the robot has reached the car, a few of the people that formed the 

crowd obstructing the robot return to the arena in a queue. The robot can decide to join the 
queue on its way back to the arena, in a manner that appears natural to the people in the 
queue.

Rulebook reference: https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1

https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1
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Architecture
MERLIN2

Formalizing Robotics Competitions: A practical case for RoboCup@Home Challenge Irene González-Fernández, Miguel A. González-Santamarta, Claudia 
Álvarez-Aparicio, Juan Diego Peña Narváez, Francisco Martín and Francisco J. Rodríguez-Lera  IEEE ICARSC 2024 
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Components

Formalizing Robotics Competitions: A practical case for RoboCup@Home Challenge Irene González-Fernández, Miguel A. González-Santamarta, Claudia 
Álvarez-Aparicio, Juan Diego Peña Narváez, Francisco Martín and Francisco J. Rodríguez-Lera  IEEE ICARSC 2024 
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