ReBeT: Architecturebased Self-adaptation of Robotic Systems through Behavior Trees

Elvin Alberts

Vrije Universiteit Amsterdam & Delft University of Technology

Ilias Gerostathopoulos

Vrije Universiteit Amsterdam

Vincenzo Stoico

Vrije Universiteit Amsterdam

Patricia Lago

Vrije Universiteit Amsterdam

Robots need to become self-adaptive.

Behavior Trees

- Kind of like a hierarchical state machine
- The tree is 'ticked' at the root, and this is propagated down.
- Each node is either in a state of 'Success', 'Failure' or 'Running'
- There is quite nice library non-specific to robotics called BT.CPP

Three types of BT nodes: Fallback **Fallback** Sequence **Fallback** Clear All 1 Hz Spin Wait Environment Clear Local **Fallback TEB Controller** Environment Clear Global A* Planner Environment

Three types of BT nodes:

Control

Three types of BT nodes:

Control

Decorators

Three types of BT nodes:

- Control
- Decorators
- Actions

Software Architectural Adaptation (F-Arch)

We allow modifying the software architecture of a ROS2 system in several ways:

- Removal and/or addition of components
- A change in parameters of components
- A change in the interconnections of components

Software Architectural Adaptation (F-Arch)

We allow modifying the software architecture of a ROS2 system in several ways:

- Removal and/or addition of components
- A change in parameters of components
- A change in the interconnections of components

Software Architectural Adaptation (F-Arch)

We allow modifying the software architecture of a ROS2 system in several ways:

- Removal and/or addition of components
- A change in parameters of components
- A change in the interconnections of components

Let's put it all together concretely.

FROG

FROG and his newfound mission


```
<AdjustMaxSpeed
adaptation_strategy="ucb_strategy" adaptation_options="0.10;0.18;0.26"
adaptation_subject="max_velocity" subject_location="velocity_smoother">
                                                              XML
                             «ROS2 C++ Node»
                              AdjustMaxSpeed
```


Behind the scenes

Two ROS2 Nodes walk into a bar...

Behind the scenes

Two ROS2 Nodes walk into a bar...

Hopefully things can often be simpler.


```
virtual bool evaluate condition() override
   if (remaining power budget < 0.0) {</pre>
      return change_camera_feed(ALTERNATE_CAMERA);
   if((current darkness) > 0.70) {
        if (remaining power budget >= power to be used &&
remaining power budget > 0.0) {
          return increase picture_rate() || change_camera_feed(ROBOT_CAMERA);
        else {
          return change_camera_feed(ALT_CAMERA_TOPIC);
   else {
      return (reduce picture rate() || change camera feed(ROBOT CAMERA));
```

```
virtual bool evaluate condition() override
    if (remaining power budget < 0 0) {
      return change camera feed(ALTERNATE CAMERA);
   if((current darkness) > 0.70) {
        if (remaining power budget >= power to be used &&
remaining power budget > 0.0) {
         return increase picture rate() || change camera feed(ROBOT CAMERA);
        else {
          return change_camera_feed(ALTERNATE_CAMERA);
   else {
      return (reduce picture rate() || change camera feed(ROBOT CAMERA));
```

Something Interesting, and Future Work

There is no tree.

Something Interesting, and Future Work

There is no tree.

Something Interesting, and Future Work

Something Interesting, and Future Work

Something Interesting, and Future Work

- Our implementation of QR metrics is quite rudimentary.
- More types of architectural adaptation are still to be implemented for ROS2 e.g. redeployment of components.

We have an artifact

